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a b s t r a c t

Our main goal in the present work is to address an integro-differential model
under localized viscoelastic and frictional effects arising in the Boltzmann theory
of viscoelasticity. More precisely, we consider a general version in the history
context of the pioneer localized viscoelastic problem approached by Cavalcanti
and Oquendo (2003) in the null history scenario, and more recently by Cavalcanti
et al. (2018) in the history framework. By means of a new observability inequality,
we prove a general stability result to the model under a weaker assumption on
the localized frictional damping and a slower condition on the decreasing memory
kernel (of polynomial type) than the previously mentioned works. To achieve such
stability results, we still work in a general setting by removing the assumption
on complementary damping mechanisms and show, in some reasonable situations
concerning the density coefficient, that the localized viscoelastic effect is enough
to ensure the general stability (of polynomial type) to the problem.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Localized viscoelastic model

In the present work, motivated by the semilinear wave model with localized memory and linear frictional
terms proposed by Cavalcanti et al. [1,2], we are going to study the following autonomous n-dimensional
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initial–boundary value problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ(x)utt − div[κ(x)∇u] −
∫ ∞

0
g(s)div[a(x)∇η(s)] ds+ b(x)h(ut) + f(u) = 0 in Ω × (0,∞),

ηt = −ηs + ut in Ω × (0,∞) × (0,∞),
u = 0 on ∂Ω × (0,∞), η = 0 on ∂Ω × (0,∞) × (0,∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x), η0(x, s) = η0(x, s), x ∈ Ω , s ∈ (0,∞),
ηt(x, 0) = 0, x ∈ Ω , t ∈ [0,∞).

(1.1)

where

– Ω is a bounded domain of Rn, n ≥ 2, with smooth boundary ∂Ω ;
– ρ > 0 is a non-constant positive function related to material density;
– a ≥ 0 is a smooth bounded function that can vanish in a proper subset A ⊂ Ω ;
– g > 0 is the well-known memory kernel with total mass

∫∞
0 g(s) ds := g0 ∈ (0, ∥a∥−1

L∞(Ω));
– κ(x) = 1 − g0a(x), x ∈ Ω ;
– b ≥ 0 is a bounded function that will act in A when ρ is general;
– f and h are real functions satisfying standard properties.

All assumptions on the functions a, b, ρ, g, f and h will be precisely stated in Sections 2 and 3. In
the above problem (1.1), the function u = u(x, t) represents the displacement and the variable η = ηt(x, s)
stands for the relative displacement history. By following Grasselli and Pata [3, Sects. 3 and 4], one can show

ηt(·, s) =
{

u(·, t) − u0(·, t− s), s ≥ t,

u(·, t) − u(·, t− s), s < t,
(1.2)

where u0 : Ω × (−∞, 0] → R is the prescribed past history of the displacement u. Thus, one knows that
system (1.1) can be deduced from the following viscoelastic wave problem with history⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρ(x)utt − ∆u+
∫ t

−∞
g(t− s)div[a(x)∇u(s)] ds+ b(x)h(ut) + f(u) = 0 in Ω × (0,∞),

u = 0 on ∂Ω × R,
u(x, s) = u0(x, s), ut(x, 0) = ∂tu0(x, s)|s=0, (x, s) ∈ Ω × (−∞, 0],

(1.3)

and conversely. We refer to [1, Sects. 1.1 and 2.2] to a more accurate description of the model as well
as to the one-to-one correspondence between problems (1.3) and (1.1) with proper initial data such as
η0(·, s) = u0(·) − u0(·,−s), s > 0. At this point, it is worth mentioning that the localized memory does not
interfere in the core of the equivalence between these related problems. Indeed, all the arguments presented
in [1] are somehow similar and rely on the statements previously introduced e.g. in [3–5]. Here, our main
goal is to analyze the general stability of problem (1.1). In what follows, we are going to bring the attention
to problems with localized memory and then highlight our main contributions on the subject.

1.2. Viscoelastic problems under localized effects

We initially notice that there is a vast literature dealing with asymptotic and long-time behavior of
problems with linear memory without localizing coefficient, say a ≡ 1 in (1.3). Indeed, we refer to [3–16]
for problems involving the history case and [11,16–27] for models where the null history case is considered,
just to quote a few of them. Nonetheless, according to our best knowledge, there are only a few papers
addressing the stabilization of (1.3) (with or without history) under the localized viscoelastic effect, namely,
with coefficient a ≥ 0 possibly vanishing in a suitable subset A ⊂ Ω . Below, we are going to quote such
works (and their results) in order to compare with the present one.



J.C.O. Faria, M.A. Jorge Silva and A.Y. Souza Franco / Nonlinear Analysis: Real World Applications 56 (2020) 103158 3

In Cavalcanti and Oquendo [2], the authors consider the following equation with null history

utt − κ0∆u+
∫ t

0
g(t− s)div[a(x)∇u(s)] ds+ b(x)h(ut) + f(u) = 0 in Ω × (0,∞), (1.4)

with initial–boundary conditions and appropriate assumptions on the nonlinearities h and f . Both viscoelas-
tic and frictional localized coefficients a and b act only in a portion of Ω ⊂ Rn, but the authors assumed an
additional hypothesis like complementary damping mechanisms, namely,

a(x) + b(x) ≥ δ > 0, ∀ x ∈ Ω , (1.5)

which means that both viscoelastic and frictional terms cooperate with each other by constituting an
effectively (full) damping in the whole domain. Therefore, under the assumption (1.5), the authors prove
that the corresponding solution of (1.4) decays exponentially or polynomially to zero, provided the memory
kernel g decays exponentially or polynomially, respectively.

Since then, some works have appeared in the literature with the same cooperating assumption (1.5) on the
coefficients. In fact, in Cavalcanti et al. [28], the authors approach, in a more general setting, the following
model

utt − ∆u+
∫ t

0
g(t− s)div[a(x)∇u(s)] ds+ b(x)h(ut) = 0 in M × (0,+∞), (1.6)

where M is a compact Riemannian manifold with boundary. Still under the hypothesis (1.5), they prove a
general stability to the energy associated with (1.6) by considering milder assumptions on g and h than [2].
In general, the decay rate is determined by the “poorer” decay considered on the viscoleastic and frictional
damping effects.

Now, regarding problems in the history framework, we refer to Cavalcanti, Fatori and Ma [29] where the
following problem is studied

utt − ∆u+
∫ t

−∞
g(t− s)div[a(x)∇u(s)] ds+ b(x)ut + f(u) = h in Ω × (0,+∞), (1.7)

with initial–boundary conditions like in (1.3) and Ω ⊂ R3. Under the complementary damping condition
(1.5) and exponential kernel g, the authors prove the existence of a finite dimensional compact global
attractor to the dynamical system corresponding to problem (1.7). This shows that the assumption (1.5) as
well as the frictional damping b(x)ut play a crucial role in their results, which characterizes a full damping
in the overall computations and follows similar arguments as in the previous null history cases addressed
by [2,28]. Therefore, only the multiplier technique is required to reach the long-time behavior of solutions.
More recently, Shomberg [30] has complemented the results proposed in [29] by providing further regularity
for the above achieved global attractor under extra assumptions on the nonlinear term f(u), still considering
exponential memory kernel g, and again exploiting the assumption (1.5).

We remark that in all the above mentioned works [2,28–30], the assumption (1.5) is essential, since it
allows to consider the frictional and viscoelastic terms as a complementary damping acting in the whole
domain, namely, a full damping in the end. In this way, the semigroup property is no longer necessary to the
stability of solutions, for instance, and multipliers are usually enough to conclude all proofs on stabilization.
Therefore, one question that arises is whether it would be possible stabilize problem (1.3) without assuming
(1.5) or even neglecting the frictional coefficient b, that is, by taking b ≡ 0 in Ω .

To the best of our knowledge, the first work that gives a positive answer to this issue is due to Liu
and Liu [31] in the one dimensional case (n = 1). In this scenario, inspired by their own puzzling results
proved previously in [32], the authors consider, in addition to the one-dimensional linear wave equation with
the Kelvin–Voigt damping and smooth coefficients, the Boltzmann problem under discontinuity of material
properties at the interfaces, see for instance the linear models (1.3) and (1.4) therein. Thus, by assuming
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exponential memory kernel g, they prove exponential energy decay in both cases. Their arguments rely on
the strength of the one-dimensional case combined with linear semigroup theory, once both problems are
linear.

Other previous and recent attempts in the stabilization of systems by means of localized viscoleastic
effects can be found in Muñoz Rivera et al. [33,34] and Cavalcanti et al. [35,36]. However, in the latter papers
the authors deal with null history, namely, memory term defined on the range (0, t), so that the regarded
semigroup property seems to be not appropriate. Therefore, it seems hard to find a proper comparison with
such results afterwards and, for this reason, we omit them.

More recently, Cavalcanti et al. [1] study a n-dimensional (n ≥ 2) history problem with localized memory.
By assuming exponential kernel g, linear frictional damping in (1.1) (i.e. h(s) = s), standard hypotheses on
the nonlinear source f(u), and suitable conditions on the density ρ(x) and on the viscoelastic and frictional
damping coefficients a(x) and b(x) (see e.g. [1, Rem. 3.3]), the authors prove that the energy related to the
autonomous problem (1.1) decays exponentially whenever the initial energy is taken in bounded sets of the
phase space, see for instance the main results in [1, Thms. 3.1 and 4.1]. In this occasion, the assumption
(1.5) is not regarded and even in the absence of frictional damping effects (b ≡ 0), the localized viscoelastic
damping is enough to ensure the (locally) exponential stabilization of the system. As far as we know, this
consists a very weaker dissipation than those given by [2,28–31] in the context of localized memory with past
and null history. Thus, to the proof of their main results, the authors show two observability inequalities in
terms of g′ (for the linear and semilinear problems) by means of contraction arguments along with powerful
tools such as Unique Continuation Property (UCP), Geometric Control Condition (GCC) and Microlocal
Analysis (MA).

Motivated by the aforementioned papers [1,2,28–31], in especial by [1,2], and in order to go further, the
present article aims to promote a generalization of the stability results provided in [1] and to give a general
version in the history scenario of the previous viscoelastic problem in [2]. To this purpose, we work in a more
general condition with respect to frictional and viscoelastic damping. Our main contributions are highlighted
below.

1.3. Contributions and article structure

Under the previous statements, we are now in position to stress the main novelties of this paper.

(1) In Section 2, we introduce our preliminary assumptions and notations and the well-posedness result
as well. We first remark that, as in [1], we do not employ the strength of the complementary damping
assumption (1.5). Thus, we work in a more general (and harder) scenario than [2,28–31]. This fact will
be clarified in Remark 2.1 (see also Remark 3.2).

(2) We also observe that, under Assumptions 2.1 and 2.2 given in Section 2, one sees that our present
hypotheses are milder than those ones considered in [1] in three aspects:

(a) we assume a more general hypothesis on the localized frictional damping b(x)h(ut);
(b) we consider a slower decay (of polynomial type) to the memory kernel g;
(c) we reach the critical Sobolev exponent in what concerns the growth of the nonlinear source f(u).

Therefore, our damping is weaker and slower than that one considered in [1].
(3) In Section 3, we state our main stability results, namely, Theorem 3.3 and Proposition 3.5. While

in Theorem 3.3 we address the general stability concerning the energy related to problem (1.1), in
Proposition 3.5 we feature a new observability inequality involving the kernel g. The latter constitutes
the principal difference when compared with the observability inequality provided by [1] in terms of g′

(see Eqs. (3.12) and (3.13) therein). Indeed, their result does not apply in our case since our assumption
on the memory kernel (see Assumption 2.2) does not reflect the same exponential property to both g
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and g′, as done e.g. in [1]. Hence, a new proof is required, which still combines contradiction arguments
with the effective UCP, GCC and MA tools.

(4) We also note that for some suitable choices of the density coefficient ρ, see e.g. Assumption 3.1–II,
the energy stability is addressed under the sole dissipation given by the (polynomial) memory term
(i.e. b ≡ 0), see e.g. Theorem 3.3–II. In such a case, we believe it is a very weak damping that has been
considered in the literature in what concerns viscoelastic wave models with localized memory in the
history framework.

(5) In Section 4, we provide all details of the proofs of the main results. Finally, in Appendix we recall
some important (and useful) existing results in the literature to help with proofs and make this work
as clear as possible.

2. Preliminary concepts

2.1. Assumptions

In order to state our main results on the asymptotic behavior of problem (1.1), let us first consider the
assumptions and notations to be used throughout this paper as well as the well-posedness result concerning
(1.1).

Assumption 2.1. With respect to the functions a, b, ρ, g, f and h, we initially assume:

(A1) a ∈ C∞(Ω) ∩ C0(Ω) is a non-negative function such that there exists a closed connected set A ⊂ Ω

verifying
a(x) = 0 ⇐⇒ x ∈ A.

(A2) b ∈ L∞(Ω) is a non-negative function b ≥ 0 on Ω .
(A3) ρ ∈ C∞(Ω) is bounded function such that

0 < a1 ≤ ρ(x) ≤ a2, ∀x ∈ Ω , (2.1)

for some positive constants a1, a2.
(A4) g ∈ L1([0,∞)) ∩ C1([0,∞)) is a positive non-increasing function satisfying

l := 1 − g0∥a∥L∞(Ω) > 0, where g0 =
∫ ∞

0
g(s) ds. (2.2)

(A5) f ∈ C2(R) is function such that f(0) = 0 and

(a) the primitive F (s) =
∫ s

0 f(τ)dτ satisfies

− β

2 |s|2 ≤ F (s) ≤ f(s)s+ β

2 |s|2, ∀ s ∈ R, (2.3)

for β ∈ [0, λ1), where λ1 > 0 is the first eigenvalue corresponding to problem{
−div[(1 − g0a(x))∇u] = λu in Ω ,

u = 0 on ∂Ω ;

(b) there exists c > 0 such that

|f (j)(s)| ≤ c(1 + |s|)p−j , ∀ s ∈ R, j = 1, 2, (2.4)

where
p ≥ 1 if n = 2 and 1 ≤ p ≤ n

n− 2 if n ≥ 3. (2.5)
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(A6) h is continuous and monotone increasing function such that

(i) h(s)s > 0, for all s ̸= 0;
(ii) M1s

2 ≤ h(s)s ≤ M2s
2, for all |s| > 1, where M1,M2 are positive constants.

Assumption 2.2. Concerning the memory kernel g, we additionally assume:

(G1) there exist constants p2 ≥ p1 > 1 and C1, C2 > 0 such that

− C1[g(s)]p1 ≤ g′(s) ≤ −C2[g(s)]p2 , ∀ s > 0; (2.6)

(G2) there exists α0 ∈ (0, 1) such that ∫ ∞

0
[g(s)]1−α0ds < ∞. (2.7)

Before proceeding, let us give some comments on the above assumptions as follows.

Remark 2.1. In relation to the conditions (A1)–(A6) and (G1)–(G2) regarded above, we would like to
observe the following issues.

1. We first notice that Assumptions (A1)–(A2) do not require a condition like complementary damping
coefficients (1.5). Such an assumption will not be requested even for stabilization purposes.

2. Hypothesis (A5) is quite standard in the literature. A peculiar example is given by f(s) = −ξ arctan(s)
with proper coefficient ξ > 0. We highlight that in [1] the growth p like in (2.4) is only considered in
the sub-critical case. Here, the critical Sobolev exponent is achieved as one sees in (2.5). Additionally,
we observe that the growth condition on f also implies that

|f(s)| ≤ c(p)|s| + c(p)|s|p. (2.8)

We still note that (2.3) implies f ′(0) + β ≥ 0 as well.
3. Condition (A6) has its origins in the work [37]. It is crucial to construct a convex strictly increasing

function H : [0,∞) → [0,∞) vanishing at x = 0 and so that

s2 + [h(s)]2 ≤ H−1(sh(s)) for |s| ≤ 1.

Several examples of h-functions as well as decay rates were presented in [38] in a more general
framework. Such a property will be very important in the (general) energy stabilization when one
considers the case of non-vanishing complementary damping coefficient b > 0.

4. Assumptions (G1)–(G2) will be only required for stabilization purposes. It is worth mentioning that
(2.6) leads to decreasing memory kernels of polynomial type, which correspond to slower decay rates
than the (optimal) exponential one addressed in [1, Assump. 1.1].

2.2. Notations

Now we consider the well-known Hilbert space H1
0 (Ω) endowed with the topology given by

∥u∥2
1 =

∫
Ω

(1 − g0a(x))|∇u|2 dx,

which is equivalent to the usual norm of H1
0 (Ω) due to (2.2). From the Poincaré inequality we get

∥u∥2
L2(Ω) ≤ λ−1

1 ∥∇u∥2
L2(Ω), ∀ u ∈ H1

0 (Ω),
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where λ1 > 0 is the first eigenvalue of the Laplace operator with Dirichlet boundary condition and ∥ · ∥L2(Ω)
stands for the usual norm in L2(Ω).

Given a satisfying (A1), we also define the Hilbert space

H1
a =

{
u ∈ L2(Ω);

∫
Ω

a(x)|∇u|2 dx < ∞, u|∂Ω = 0
}

with respective inner-product and norm

(u, v)H1
a

=
∫
Ω

a(x)∇u · ∇v dx+
∫
Ω

u v dx, ∥u∥2
H1

a
=
∫
Ω

a(x)|∇u|2 dx+
∫
Ω

|u|2 dx.

The regularity imposed on the function a is the main ingredient to prove that H1
a is a Hilbert space and,

consequently, it makes sense to consider the trace of order zero of any function u belonging to this space. In
addition, we define the g-weighted spaces with values on H1

a as follows

L2
g(R+, H1

a) =
{
η : R+ → H1

a ;
∫ ∞

0
g(s)∥η(s)∥2

H1
a
ds < ∞

}
endowed with the inner-product and norm

(η, ζ)L2
g(R+,H1

a) =
∫ ∞

0
g(s)(η(s), ζ(s))H1

a
ds, ∥η∥2

L2
g(R+,H1

a) =
∫ ∞

0
g(s)∥η(s)∥2

H1
a
ds.

Furthermore, under the assumption (A3) on ρ, we set the space

L2
ρ(Ω) =

{
u : Ω → R;

∫
Ω

ρ(x)|u(x)|2dx < ∞
}

endowed with the norm

∥u∥ρ =
(∫

Ω

ρ(x)|u(x)|2dx
)1/2

.

Thus, due to (2.1), it is clear that
u ∈ L2

ρ(Ω) ⇐⇒ u ∈ L2(Ω).

Under the above notations, we finally define the following Hilbert phase space

H = H1
0 (Ω) × L2

ρ(Ω) × L2
g(R+, H1

a)

endowed with the norm

∥(u, v, η)∥2
H = ∥u∥2

1 + ∥v∥2
ρ + ∥η∥2

L2
g(R+,H1

a), ∀ (u, v, η) ∈ H.

2.3. Well-posedness

Denoting by U the vector-valued function U = (u, v, η), where v = ut, then problem (1.1) is equivalent
to the next Cauchy problem ⎧⎨⎩

d

dt
U(t) + AU(t) + FU(t) = 0, t > 0,

U(0) = (u0, u1, η0) := U0,
(2.9)

where A : D(A) ⊂ H → H is the linear operator

AU =

⎛⎜⎜⎜⎝
−v

− 1
ρ(x)

{
div[κ(x)∇u] +

∫ ∞

0
g(s)div[a∇η(s)] ds− b(x)h(v)

}
ηs − v

⎞⎟⎟⎟⎠
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with domain

D(A) =
{

(u, v, η) ∈ H; v ∈ H1
0 (Ω), ηs ∈ L2

g(R+, H1
a), η(0) = 0,

div[κ(x)∇u] +
∫ ∞

0
g(s)div[a(x)∇η(s)] ds ∈ L2(Ω)

}
.

which is well-defined due to the growth of h, and F : H → H is set by

F(U) =
(

0, 1
ρ(x)f(u), 0

)T

,

being also well-defined by virtue of the growth condition on f and standard Sobolev embedding.
The Hadamard well-posedness of problem (2.9) and, consequently, of the original system (1.1), reads as

follows.

Theorem 2.2 (Global Well-posedness). Under the Assumption 2.1 we have:

(i) If U0 = (u0, u1, η0) ∈ D(A), then there exists a unique regular solution U = (u, ut, η) of (2.9) such that

u ∈ W 2,∞(0, T ;L2
ρ(Ω)) ∩W 1,∞(0, T ;H1

0 (Ω)), η ∈ W 1,∞(0, T ; M),

with U(t) = (u(t), ut(t), ηt) ∈ D(A), for all t ∈ [0, T ], for a given T > 0.
(ii) If U0 = (u0, u1, η0) ∈ H, then there exists a unique mild solution U = (u, ut, η) of (2.9) such that

u ∈ C1([0, T ];L2
ρ(Ω)) ∩ C([0, T ];H1

0 (Ω)), η ∈ C([0, T ],M),

for all T > 0 given.
(iii) Moreover, these solutions are continuously dependent of the initial data, in the norm of C([0, T ],H), for

all T > 0.

The proof of Theorem 2.2 relies on very similar arguments as those presented in [1,29], with minor
adjustments on the nonlinear frictional damping b(x)h(ut) that can be handled analogously to [37,38].
Therefore, we shall omit the proof of Theorem 2.2.

3. Main stability results

Let us consider U(t) = (u, ut, η) the unique global solution of problem (2.9) (resp. (1.1)). The associated
energy functional is given by

Eu,η(t) = 1
2

∫
Ω

ρ(x)|ut(t)|2 dx+ 1
2

∫
Ω

κ(x)|∇u(t)|2 dx+ 1
2

∫ ∞

0
g(s)∥

√
a∇ηt(s)∥2ds+

∫
Ω

F (u(t))dx. (3.1)

In order to prove locally uniform decay rates for Eu,η(t), we deal with two possibilities for the frictional
damping coefficient b ≥ 0 below, depending on the density coefficient ρ. Firstly, we observe that a straight
forward computation leads to

d

dt
Eu,η(t) = 1

2

∫ ∞

0
g′(s)∥

√
a∇ηt(s)∥2ds−

∫
Ω

b(x)h(ut(t))ut(t) dx, (3.2)

which reduces to
d

dt
Eu,η(t) = 1

2

∫ ∞

0
g′(s)∥

√
a∇ηt(s)∥2ds, (3.3)

for the case of vanishing coefficient b ≡ 0.
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Remark 3.1. At this point, let us give some comments on the identities (3.2)–(3.3). In both cases, due to the
Assumption 2.1 (see (A2), (A4) and (A6)), one sees that the energy is non-increasing with Eu,η(t) ≤ Eu,η(0)
for all t > 0. Additionally, in case of (3.3) one has that the only dissipativity comes from the memory term
and due to technical reasons we must take some specific features for the density coefficient ρ(x). In this part
we follow the same assumptions as in [1, Rem. 3.3]. On the other hand, in a more general scenario with ρ(x)
satisfying only (A3), the presence of the frictional damping is necessary with proper condition on b(x). In
both situations, the Assumption 2.2 will play an important role in the stability result.

Under the above remark, we are going to consider two cases as follows. For this purpose, we follow the
same assumptions as regarded in [1], see Remarks 3.2 and 3.3 therein.

Assumption 3.1. Concerning the density and frictional coefficients, we assume either:

I. General Density ρ(x). If ρ(x) is a general function, then we assume that b(x) is effective at the whole
set A, that is, there exists b0 > 0 such that

b(x) ≥ b0 > 0 a.e. x ∈ A. (3.4)

II. Specific Density ρ(x). Let K = (Ki,j) be a matrix given by Ki,j(x) = κ(x)δij , where δij is the
Kronecker delta function, and set ω′ = Ω \ A. If ρ(x) satisfies one of the following statements, then
we can consider b ≡ 0 in (1.1).

– Constant Case: ρ(x) = ρ0 > 0 for n ≥ 2. In this scenario, we observe that the geodesics of
the metric G =

(
K

ρ(x)

)−1
are straight lines in A and, therefore, every geodesic of the G metric

which enters A does not remain inside A. Thus, ω′ satisfies the Geometric Control Condition (GCC)
according to [1, Appendix 5].

– Non-constant Case: ρ(x) = (1 − g0a(x))
n

n−2 for n ≥ 3. In this case, we note that ρ(x) = κ(x) = 1,
for all x ∈ A. Then, if we consider the Riemannian metric G =

(
K

ρ(x)

)−1
, we still observe that the

geodesics are straight lines in A. Therefore, every geodesic which crosses A does not remain in A.
Consequently, the set ω′ also satisfies the GCC. We refer again to [1, Appendix 5] to the proof that
every geodesic in Riemannian metric G meets ∂Ω as well as to find other examples of non-constant
density ρ(x) in the particular dimension n = 2.

Remark 3.2. It is worth pointing out that, even under the Assumption 2.1–(A1)–(A2) and
Assumption 3.1–I, the condition (1.5) is not regarded. Moreover, in view of Assumption 3.1–II we are going
to provide a general stability (of polynomial type) to the energy defined in (3.1) under the sole localized
viscoelastic effect. To illustrate the Assumptions 3.1 and 2.1 we consider Fig. 1.

Our main stability result reads as follows.

Theorem 3.3 (Main Result). Let us take on the Assumptions 2.1 and 2.2, and let R > 0 be given such that
Eu,η(0) ≤ R and sup

τ<0
∥
√
a∇u0(τ)∥ < R. We have:

I. Under the additional Assumption 3.1–I, then there exists a time T0 > 0 such that

Eu,η(t) ≤ S

(
t

T0
− 1
)
, ∀ t > T0, with lim

t→∞
S(t) = 0, (3.5)

where S(t) is the solution of the ODE

d

dt
S(t) + q1(S(t)) = 0, S(0) = Eu,η(0), (3.6)
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Fig. 1. The viscoelastic effect acts in ω′ = Ω\A while the frictional one is only located in the closed connected set A ⊂ Ω in case I
and may vanish in case II.

with q1(s) = s− (Id+ p1)−1(s), and for some constant C = C(R, T ) > 0 we have

p1(s) =
[
C

(
J + H̃−1 +

(
1
M1

+M2

)
Id

)]−1
(s),

H̃(s) =T∥b∥L1(Ω)H

(
1

T∥b∥L1(Ω)
s

)
, T > T0,

J(s) = g(0)(1−α0) α0
p2

C
α0
p2

2

(
sup
t≥0

∫ ∞

0
g(r)1−α0∥

√
a∇ηt(r)∥2dr + 1

)1− α0
p2
T
( s
T

)α0
p2 , T > T0.

II. Under the additional Assumption 3.1–II, then there exists a time T0 > 0 such that

Eu,η(t) ≤ S

(
t

T0
− 1
)
, ∀ t > T0, with lim

t→∞
S(t) = 0, (3.7)

where S(t) is now the solution of the ODE
d

dt
S(t) + q2(S(t)) = 0, S(0) = Eu,η(0), (3.8)

and for some constant C̃ = C̃(R, T ) > 0 we have

q2(s) = s− (Id+ p2)−1(s),
p2(s) = C̃ · J−1(s), J set as above.

Remark 3.4. Before proceeding with the main result that leads to the proof of the decay rates (3.5) in
case I (under the Assumption 3.1–I) and (3.7) in case II (under the Assumption 3.1–II), let us first give
some comments on examples of stability.

I. Let us split this case into four sub-cases:

(1) For exponential kernel g (which would mean p2 = p1 = 1 in (2.6)) and linear frictional damping
(i.e. taking h(ut) = ut in (1.1)), then (3.5) falls on the exponential stability. Indeed, this is exactly
the case approached in [1, Sects. 3 and 4], see Theorem 3.1 (for f = 0) and Theorem 4.1 (for f ̸= 0)
therein.

(2) Still considering exponential memory kernel g, but taking h as a non-linear frictional damping
satisfying (A6), then (3.5) is carried out by the frictional effect through the function H constructed
in Remark 2.1-3, and several examples of decay rates can be found e.g. in [28,38].
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(3) For non-exponential kernel g satisfying (2.6) and linear frictional damping (h(ut) = ut), then the
stability (3.5) is driven by the viscoelastic effect coming from the memory kernel g, and by virtue
of the assumptions (G1)–(G2), the concrete polynomial decay rates can be achieved similar to that
presented in [21, Sect. IV].

(4) In a general situation where g satisfies (G1)–(G2) and h satisfies (A6), then the decay (3.5) is
conducted by the worst scenario, namely, the worst decay rate estimate provided by g and h, as
considered in [28, Sect. 1], see Theorem 1.4 and Remarks 4–6 therein.

II. In this case, the stability coming from (3.7) depends only on the (polynomial) behavior of the memory
kernel g, and the decay rate is already clarified in [21, Sect. IV], as above.

The main tool in the conclusion of the proof of Theorem 3.3 is given by the next result. Indeed, it will
provide new and key observability inequalities that play a crucial role in the proofs of the estimates (3.5) in
case I and (3.7) in case II. More precisely, we have:

Proposition 3.5 (Observability Inequality). Let us take on the Assumptions 2.1 and 2.2, and let R > 0 be
given such that Eu,η(0) ≤ R. We have:

I. Under the further Assumption 3.1–I, then for all T > T0 > 0 there exists a constant C = C(T,R) > 0
such that

Eu,η(0) ≤ C

(∫ T

0

∫ ∞

0
g(s)∥

√
a∇ηt(s)∥2dsdt+

∫ T

0

∫
Ω

b(x)(|ut(t)|2 + |h(ut(t))|2)dxdt
)
. (3.9)

II. Under the further Assumption 3.1–II, then for all T > T0 > 0 there exists a constant C̃ = C̃(T,R) > 0
such that

Eu,η(0) ≤ C̃

∫ T

0

∫ ∞

0
g(s)∥

√
a∇ηt(s)∥2dsdt. (3.10)

Both Proposition 3.5 and Theorem 3.3 will be proved in the next section. To the proof of Proposition 3.5
we rely on contradiction arguments in combination with microlocal analysis. For the latter we use the theory
developed by Gérard in [39], whose results are briefly recalled in Appendix A.2 to make this paper more self-
contained as possible. To this end, we quote and use again [1, Appendix 5] where a more complete range of
results in microlocal analysis are built and adjusted to the present problem.

4. Proofs

4.1. Proof of the observability inequality: Part I

Let us start by proving inequality (3.9) in Proposition 3.5. Indeed, if it does not hold, then there exists a
time T > T0 > 0 and a sequence of solutions (uk, ηk) for (1.1) verifying

Euk,ηk
(0) ≤ R, (4.1)

and
lim

k→∞

Euk,ηk
(0)∫ T

0

∫ ∞

0
g(s)∥

√
a∇ηt

k(s)∥2dsdt+
∫ T

0

∫
Ω

b(x)(|u′
k(t)|2 + |h(u′

k(t))|2)dxdt
= +∞, (4.2)

where Euk,ηk
(t) is the energy defined in (3.1) associated with the solution (uk, ηk) of (1.1). Also, from now

on, the notation u′
k stands for the time derivative ∂tuk. Combining (4.1) and (4.2) it follows that

lim
k→∞

[∫ T

0

∫ ∞

0
g(s)∥

√
a∇ηt

k(s)∥2dsdt+
∫ T

0

∫
Ω

b(x)(|u′
k(t)|2 + |h(u′

k(t))|2)dxdt
]

= 0. (4.3)
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Now we claim that

lim
k→∞

∫ T

0

∫ ∞

0
−g′(s)∥

√
a∇ηt

k(s)∥2dsdt = 0. (4.4)

In fact, since p1 > 1, we can write p1 = ζ + ξ where ζ ≥ 1 and 0 < ξ < 1, and then we have∫ T

0

∫ ∞

0
(−g′(s))∥

√
a∇ηt

k(s)∥2dsdt

=
∫ T

0

∫ ∞

0

−g′(s)
g(s)ξ

g(s)ξ∥
√
a∇ηt

k(s)∥2dsdt

≤
∫ T

0

[∫ ∞

0

−g′(s)
g(s)ξ

∥
√
a∇ηt

k(s)∥2ds

]1−ξ [∫ ∞

0

−g′(s)
g(s)ξ

g(s)∥
√
a∇ηt

k(s)∥2ds

]ξ

dt

=
∫ T

0

[∫ ∞

0

−g′(s)
g(s)ξ

∥
√
a∇ηt

k(s)∥2ds

]1−ξ [∫ ∞

0
−g′(s)g(s)1−ξ∥

√
a∇ηt

k(s)∥2ds

]ξ

dt.

From the hypothesis (G1), we also see

−g′(s)
g(s)ξ

≤ C1
g(s)p1

g(s)ξ
= C1g(s)p1−ξ = C1g(s)ζ with ζ ≥ 1.

If g(0) ≤ 1, then g(s)ζ ≤ g(s) for all s ≥ 0, once g is decreasing. Combining the latter with the preceding
inequality, we get ∫ ∞

0

−g′(s)
g(s)ξ

∥
√
a∇ηt

k(s)∥2ds ≤ C1

∫ ∞

0
g(s)∥

√
a∇ηt

k(s)∥2ds.

On the other hand, if g(0) > 1, there exists s0 > 0 such that g(s0) = 1 and g(s) ≤ 1 for all s ≥ s0. Thus,∫ ∞

0

−g′(s)
g(s)ξ

∥
√
a∇ηt

k(s)∥2ds

≤ C1

∫ ∞

0
g(s)ζ∥

√
a∇ηt

k(s)∥2ds

= C1

∫ s0

0
g(s)ζ∥

√
a∇ηt

k(s)∥2ds+ C1

∫ ∞

s0

g(s)ζ∥
√
a∇ηt

k(s)∥2ds

≤ C1
g(0)ζ

g(s0)

∫ s0

0
g(s)∥

√
a∇ηt

k(s)∥2ds+ C1

∫ ∞

s0

g(s)∥
√
a∇ηt

k(s)∥2ds

= C1
(
1 + g(0)ζ

) ∫ ∞

0
g(s)∥

√
a∇ηt

k(s)∥2ds.

In both situations, we obtain∫ ∞

0

−g′(s)
g(s)ξ

∥
√
a∇ηt

k(s)∥2ds ≤ C1
(
1 + g(0)ζ

) ∫ ∞

0
g(s)∥

√
a∇ηt

k(s)∥2ds. (4.5)

In addition, we still have

−g′(s)g(s)1−ξ ≤ C1g(s)p1g(s)1−ξ = C1g(s)1−ξ+p1 = C1g(s)1+ζ ,

and following similar arguments as in (4.5), we infer∫ ∞

0
−g′(s)g(s)1−ξ∥

√
a∇ηt

k(s)∥2ds ≤
(
C1 + g(0)ζ

g(s0)

)∫ ∞

0
g(s)∥

√
a∇ηt

k(s)∥2ds.
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Therefore, ∫ T

0

∫ ∞

0
(−g′(s))∥

√
a∇ηt

k(s)∥2dsdt

≤
∫ T

0

[∫ ∞

0

−g′(s)
g(s)ξ

∥
√
a∇ηt

k(s)∥2ds

]1−ξ [∫ ∞

0
−g′(s)g(s)1−ξ∥

√
a∇ηt

k(s)∥2ds

]ξ

dt

≤ C1

(
1 + g(0)ζ

g(s0)

)∫ T

0

[∫ ∞

0
g(s)∥

√
a∇ηt

k(s)∥2ds

]1−ξ [∫ ∞

0
g(s)∥

√
a∇ηt

k(s)∥2ds

]ξ

dt

= C1
(
1 + g(0)ζ

) ∫ T

0

∫ ∞

0
g(s)∥

√
a∇ηt

k(s)∥2dsdt,

from where (4.4) follows by means of the limit (4.3). Keeping these both convergences (4.3)–(4.4) in mind,
we proceed as follows.

Since Euk,ηk
(t) ≤ Euk,ηk

(0) ≤ R, for all t ≥ 0, it follows that there exists a subsequence {(uk, ηk)}, still
denoted by {(uk, ηk)}, such that

uk
∗
⇀ u in L∞(0, T ;H1

0 (Ω)), (4.6)
u′

k
∗
⇀ u′ in L∞(0, T ;L2(Ω)), (4.7)

and, from Aubin–Lions Theorem it follows that

uk → u in L2(0, T ;L2(Ω)). (4.8)

To achieve the desired contradiction, let us consider two cases.
Case 1: u ̸= 0. For each k ∈ N, (uk, ηk) is a solution of the following problem⎧⎪⎪⎨⎪⎪⎩

ρ(x)u′′
k − div[κ(x)∇uk] −

∫ ∞

0
g(s)div[a(x)∇ηt

k(s)] ds+ b(x)h(u′
k) + f(uk) = 0

in Ω × (0, T ),
η′

k = −∂sηk + u′
k in Ω × (0, T ) × (0,∞),

(4.9)

with initial and boundary conditions

uk = 0 on ∂Ω × (0, T ), ηk = 0 on ∂Ω × (0, T ) × (0,∞),
uk(0) = u0k, u

′
k(0) = u1k, η

0
k(s) = η0k(s) in Ω , s ∈ (0,∞), (4.10)

ηt
k(0) = 0 in Ω , t ∈ [0, T ).

From (2.8) and H1
0 (Ω) ↪→ L2p(Ω) we obtain

∥f(uk)∥L∞(0,T ;L2(Ω)) ≤ c∥uk∥2
L∞(0,T ;H1

0 (Ω)) + c∥uk∥2p

L∞(0,T ;H1
0 (Ω)) ≤ c, ∀k ∈ N, (4.11)

and, in particular, this implies that {f(uk)} is bounded in L2(0, T ;L2(Ω)). Besides, uk → u almost
everywhere in Ω × (0, T ), and from the continuity of f it follows that f(uk) → f(u) almost everywhere
in Ω × (0, T ). Then, from Lions’ Lemma

f(uk) ⇀ f(u) in L2(0, T ;L2(Ω)). (4.12)

From (4.3), (4.6) and (4.12) results

ρ(x)u′′ − div[κ(x)∇u] + f(u) = 0 in L2(0, T ;H−1(Ω)). (4.13)
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Now, motivated by [1] (see on page 6555 therein), we define the auxiliary function

zk = κ(x)uk + a(x)
∫ ∞

0
g(s)ηt

k(s) ds, k ∈ N. (4.14)

Using the second equation of (4.9), integration by parts and (4.10)3 we have, for almost every t > 0,

z′
k(t) = κ(x)u′

k(t) + a(x)
∫ ∞

0
g(s)[ηt

k(s)]′ ds

= κ(x)u′
k(t) + a(x)

∫ ∞

0
g(s)[−∂sη

t
k(s) + u′

k(t)] ds

= u′
k(t) + a(x)

∫ ∞

0
g′(s)ηt

k(s) ds.

Now, let ω∗ be a closed subset of Ω such that A ⊂⊂ ω∗. Then there exists c > 0 such that∫
Ω\ω∗

|ηt
k(x, s)|2dx ≤ 1

a0λ1

∫
Ω\ω∗

a(x)|∇ηt
k(x, s)|2dx, ∀s > 0, (4.15)

where a(x) ≥ a0 > 0 for all x ∈ Ω \ ω∗. Then, from (4.4), (4.7) and (4.15), we infer

z′
k ⇀ u′ in L2(0, T ;L2(Ω \ ω∗)). (4.16)

Moreover, an analogous calculation implies, in view of (4.3), (4.8) and (4.15), that

zk → κ(·)u in L2(0, T ;L2(Ω \ ω∗)) ↪→ D′(0, T ;L2(Ω \ ω∗)),

and consequently
z′

k → κ(·)u′ in D′(0, T ;L2(Ω \ ω∗)). (4.17)

From (4.16)–(4.17) we obtain κ(·)u′ = u′ in L2(0, T ;L2(Ω \ ω∗)). As κ(x) − 1 ̸= 0 in ω∗,

u′ ≡ 0 a.e. in ω∗ × (0, T ), for all ω∗ ⊃⊃ A,

which implies
u′ ≡ 0 a.e. in (Ω \A) × (0, T ). (4.18)

On the other hand, from (4.3) and using that b(x) ≥ b0 > 0 in A, we obtain

u′ ≡ 0 a.e. in A× (0, T ). (4.19)

Consequently, from (4.18) and (4.19) we deduce

u′ ≡ 0 a.e. in Ω × (0, T ),

which implies u′′ ≡ 0 in Ω × (0, T ), and also

div[κ(x)∇u(t)] = f(u(t)),

which in turn implies, along with condition (A5)-(a), that

∥u(t)∥2
1 − β

2 ∥u(t)∥2 = −
∫
Ω

f(u(t))udx− β

2 ∥u(t)∥2 ≤ β

2 ∥u(t)∥2,

and
λ1∥u(t)∥2 ≤ β∥u(t)∥2.
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Since β < λ1, one concludes
u ≡ 0 in Ω × (0, T ),

which is a contradiction.
Case 2: u = 0. In this case, for each k ∈ N, we initially define

αk =
[
Euk,ηk

(0)
]1/2

, vk = 1
αk

uk, ζk = 1
αk

ηk. (4.20)

Then, (vk, ζk) is a solution of⎧⎪⎪⎨⎪⎪⎩
ρ(x)v′′

k − div[κ(x)∇vk] −
∫ ∞

0
g(s)div[a(x)∇ζt

k(s)] ds+ b(x)h(αkv
′
k)

αk
+ f(αkvk)

αk
= 0

in Ω × (0, T ),
{ζt

k}′ = −∂sζ
t
k + v′

k in Ω × (0, T ) × (0,∞),

(4.21)

with initial and boundary conditions

vk = 0 on ∂Ω × (0, T ), ζk = 0 on ∂Ω × (0, T ) × (0,∞),
vk(0) = v0k, v

′
k(0) = v1k, ζ

0
k(s) = ζ0k(s) in Ω , s ∈ (0,∞), (4.22)

ζt
k(0) = 0 in Ω , t ∈ [0, T ).

The energy functional associated with (4.21)–(4.22) is given by

Evk,ζk
(t) = 1

2

∫
Ω

ρ(x)|v′
k(t)|2 dx+ 1

2

∫
Ω

κ(x)|∇vk(t)|2 dx+ 1
2

∫ ∞

0
g(s)∥

√
a∇ζt

k∥2ds

+
∫
Ω

F (αkvk(t))
α2

k

dx. (4.23)

We first notice that hypothesis (A5)-(a) yields

1
2∥vk(t)∥2

1 +
∫
Ω

F (αkvk(t))
α2

k

dx ≥ 1
2∥vk(t)∥2

1 − 1
α2

k

β

2 ∥αkvk(t)∥2

= 1
2∥vk(t)∥2

1 − β

2 ∥vk(t)∥2

= 1
2∥vk(t)∥2

1 − β

2λ1
∥vk(t)∥2

1 ≥ 0,

and then Evk,ζk
(t) ≥ 0, from all k ∈ N and all t ∈ [0, T ]. We also observe that the energy functional Evk,ζk

(t)
satisfies

d

dt
Evk,ζk

(t) = 1
2

∫ ∞

0
g′(s)∥

√
a∇ζt

k∥2ds−
∫
Ω

b(x)v′
k(t)h(αkv

′
k(t))

αk
dx ≤ 0, t ∈ [0, T ].

Then, Evk,ηk
(t) is a non-increasing function such that

Evk,ζk
(0) = Evk,ζk

(T ) + 1
2

∫ T

0

∫ ∞

0
(−g′(s))∥

√
a∇ζt

k∥2ds+
∫
Ω

b(x)v′
k

h(αkv
′
k(t))

αk
dxdt. (4.24)

Besides, from (4.20) we have

Evk,ζk
(t) = 1

α2
k

Euk,ηk
(t) = 1

Euk,ηk
(0)Euk,ηk

(t), t ∈ [0, T ],

and then
Evk,ζk

(0) = 1, ∀ k ∈ N. (4.25)
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Accordingly to (4.3)–(4.4),

lim
k→+∞

[∫ T

0

∫ ∞

0
g(s)∥

√
a∇ζt

k∥2dsdt+
∫ T

0

∫
Ω

b(x)|v′
k(x, t)|2 + b(x) |h(αkv

′
k)|2

α2
k

dxdt

]
= 0, (4.26)

and
lim

k→+∞

∫ T

0

∫ ∞

0
−g′(s)∥

√
a∇ζt

k∥2dsdt = 0. (4.27)

Thus, passing (4.24) to the limit, and observing (4.25)–(4.27), we conclude

1 = lim
k→+∞

Evk,ζk
(0) = lim

k→+∞
Evk,ζk

(T ). (4.28)

On the other hand, if we show that Evk,ζk
(T ) goes to zero, that is,

lim
k→+∞

Evk,ζk
(T ) = 0, (4.29)

then desired contradiction is achieved in this case and, therefore, the proof of (3.9) in the part I is complete.
In what follows, we aim to obtain (4.29). Indeed, since Evk,ζk

(t) ≤ Evk,ζk
(0) = 1 for all t ∈ [0, T ], there

exists a subsequence of {(vk, ζk)}, still denoted by {(vk, ζk)}, such that

vk
∗
⇀ v in L∞(0, T ;H1

0 (Ω)), (4.30)
v′

k
∗
⇀ v′ in L∞(0, T ;L2(Ω)), (4.31)

vk → v in L2(0, T ;L2(Ω)). (4.32)

Firstly, let us prove that v ≡ 0 in Ω × (0, T ). Since αk = [Euk,ηk
(0)]1/2, from (4.1) results that there exists

α ≥ 0 such that
αk → α.

We consider again two possibilities, namely, α > 0 or α = 0.
P1. α > 0. Here, from (4.8) and (4.20) result that αkvk → 0 in L2(0, T ;L2(Ω)), and following similar

arguments as in the proof of (4.12), we obtain

f(αkvk)
αk

⇀ 0 in L2(0, T ;L2(Ω)). (4.33)

From (4.26), (4.30), (4.31), (4.33), and passing (4.21)1 to the limit, we obtain

ρ(x)v′′ − div[κ(x)∇v] = 0 in L2(0, T ;H−1(Ω)). (4.34)

Using analogous computations as in (4.14)–(4.18), from (4.26) and hypothesis (3.4) we conclude that v′ ≡ 0
in Ω × (0, T ). Therefore, standard multipliers with (4.34) lead to v ≡ 0 in Ω × (0, T ).

P2. α = 0. By using Taylor’s formula along with hypotheses f(0) = 0 and (A5)-(b), we get

f(s) = f ′(0)s+R(s), (4.35)

where
|R(s)| ≤ c|s|2 + c|s|p, ∀s ∈ R. (4.36)

From (4.36), the fact that α = 0 and {vn} is bounded in L∞(0, T ;H1
0 (Ω)), we deduce

R(αkvk(t))
αk

→ 0 in L∞(0, T ;L1(Ω)). (4.37)
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Passing (4.21)1 to the limit, and using (4.26), (4.35), (4.37), we obtain

ρ(x)v′′ − div[κ(x)∇v] + f ′(0)v = 0 in L2(0, T ;H−1(Ω)). (4.38)

Now, we define
z̃k = κ(x)vk + a(x)

∫ ∞

0
g(s)ζt

k(s) ds, k ∈ N.

Again proceeding as in (4.14)–(4.18), we have v′ ≡ 0 in (Ω \A) × (0, T ). Taking the derivative of (4.38) in
t and writing v′ = w, we arrive at{

ρ(x)w′′ − div[κ(x)∇w] + f ′(0)w = 0 in Ω × (0, T ),
w ≡ 0 in (Ω \A) × (0, T ).

(4.39)

At this moment we use the strength of the unique continuation property provided by Theorem A.1. In fact,
from the latter, it results that v′ ≡ 0 in Ω × (0, T ). Then, multiplying (4.38) by v, integrating by parts in Ω

and integrating in (0, T ), we infer

λ1∥v∥2
L2(0,T ;L2(Ω)) + f ′(0)∥v∥2

L2(0,T ;L2(Ω)) = 0. (4.40)

Regarding that 0 ≤ β < λ1 and β + f ′(0) ≥ 0, then (4.40) yields

0 ≤ β∥v∥2
L2(0,T ;L2(Ω)) + f ′(0)∥v∥2

L2(0,T ;L2(Ω)) < λ1∥v∥2
L2(0,T ;L2(Ω)) + f ′(0)∥v∥2

L2(0,T ;L2(Ω)) = 0, (4.41)

which implies v ≡ 0 in Ω × (0, T ). Consequently, we have proved that v ≡ 0 in Ω × (0, T ) as desired, and
from (4.30)–(4.32), we infer

vk
∗
⇀ 0 in L∞(0, T ;H1

0 (Ω)), (4.42)
v′

k
∗
⇀ 0 in L∞(0, T ;L2(Ω)), (4.43)

vk → 0 in L2(0, T ;L2(Ω)). (4.44)

To the next estimates, let us take θ ∈ C∞
0 (0, T ) and φ ∈ C∞

0 (Ω) such that suppφ ⊂ (Ω \A). From this,∫
Ω

(φ(x) + |∇φ(x)|)|ζt
k|2 dx ≤ cφ

∫
Ω

a(x)|∇ζt
k|2 dx. (4.45)

In addition, setting ϕk(x, t) =
∫∞

0 g(s)ζt
k(x, s) ds, multiplying the first equation of (4.21) by θφ(x)ϕk, and

integrating by parts on Ω × (0, T ), we get

0 = −
∫ T

0

∫
Ω

ρ(x)v′
kϕ

′
kφ(x)θ(t) dxdt−

∫ T

0

∫
Ω

ρ(x)v′
kϕkφ(x)θ′(t) dxdt

+
∫ T

0

∫
Ω

κ(x)∇vk · ∇ϕk φ(x)θ(t) dxdt+
∫ T

0

∫
Ω

κ(x)∇vk · ∇φ(x)ϕkθ(t) dxdt

+
∫ T

0

∫ ∞

0
g(s)

∫
Ω

a(x)∇ζt
k(s) · ∇φ(x)ϕkθ(t) dxdsdt

+
∫ T

0

∫ ∞

0
g(s)

∫
Ω

a(x)∇ζt
k · ∇ϕk φ(x)θ(t) dxdsdt (4.46)

+
∫ T

0

∫
Ω

b(x)h(αkv
′
k)

αk
ϕkφ(x)θ(t) dxdt

+
∫ T

0

∫
Ω

f(αkvk)
αk

ϕkφ(x)θ(t)dxdt := J1k + J2k + · · · + J6k + J7k + J8k.
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From the convergences (4.26), (4.42)–(4.44) and (4.45) we directly see that

lim
k→∞

J2k = · · · = lim
k→∞

J6k = 0. (4.47)

In order to obtain a limit for J7k, we take (4.26) into account and the following inequalities⏐⏐⏐⏐⏐
∫ T

0

∫ ∞

0
g(s)

∫
Ω

b(x)h(αkv
′
k)

αk
ζt

k(x, s)φ(x)θ(t) dxdtds

⏐⏐⏐⏐⏐ (4.48)

≤ c(b, φ, θ)
∫ T

0

∫ ∞

0
g(s)

[∫
Ω

b(x)
⏐⏐⏐⏐h(αkv

′
k)

αk

⏐⏐⏐⏐2dx
] 1

2 [∫
Ω

|φ(x)||ζt
k(x, s)|2dx

] 1
2
dsdt

≤ c(b, φ, θ, g0)
[∫ T

0

∫
Ω

b(x)
⏐⏐⏐⏐h(αkv

′
k)

αk

⏐⏐⏐⏐2dxdt+
∫ T

0

∫ ∞

0
g(s)

∫
Ω

a(x)|∇ζt
k(x, s)|2dxdsdt

]
,

to conclude that lim
k→∞

J7k = 0.
To compute a limit for J8k we use (2.8) to have⏐⏐⏐⏐f(αkvk(t))

αk

⏐⏐⏐⏐ ≤ c(p)|vk(t)| + c(p)|αk|p−1|vk(t)|p, ∀k ∈ N.

Consequently, there exists a constant c > 0 such that∫ T

0

∫
Ω

⏐⏐⏐⏐f(αkvk(t))
αk

⏐⏐⏐⏐2dxdt < c, ∀k ∈ N ∀t ∈ [0, T ].

Then, from (4.26) and∫ T

0

∫
Ω

⏐⏐⏐⏐ ∫ ∞

0
g(s)ζt

k(x, s)φ(x)θ(t)ds
⏐⏐⏐⏐2dxdt ≤ c(θ, g0, a)

∫ T

0

∫ ∞

0
g(s)∥

√
a∇ζt

k(s)∥2dsdt,

we get lim
k→∞

J8k = 0. Going back to (4.46), one sees that lim J1k = 0. Now, remembering that {ζt
k}′ =

−∂sζ
t
k + v′

k and writing

J1k = −g0

∫ T

0
θ(t)

∫
Ω

φ(x)ρ(x)|v′
k|2dxdt−

∫ T

0
θ(t)

∫ ∞

0
g′(s)

∫
Ω

φ(x)ρ(x)ζk(s)v′
k(t)dxdsdt

:= L1k + L2k,

and since lim
k→∞

L2k = 0, we conclude

lim
k→∞

∫ T

0

∫
Ω

ρ(x)θ(t)φ(x)|v′
k|2 dxdt = 0. (4.49)

Returning to (4.21), multiplying its first equation by θ(t)φ(x)vk and integrating by parts on Ω × (0, T ),
yields

0 = −
∫ T

0
θ(t)

∫
Ω

φ(x)ρ(x)|v′
k(t)|2 dxdt −

∫ T

0
θ′(t)

∫
Ω

φ(x)ρ(x)v′
k(t)vk(t) dxdt

+
∫ T

0
θ(t)

∫
Ω

φ(x)κ(x)|∇vk(t)|2 dxdt+
∫ T

0

∫
Ω

κ(x)∇vk · ∇φ(x)vkθ(t)dxdt

+
∫ T

0

∫ ∞

0
g(s)

∫
Ω

a(x)∇ζt
k(s) · ∇φ(x)vkθ(t)dxdsdt

+
∫ T

0
θ(t)

∫
Ω

(∫ ∞

0
g(s)a(x)∇ζt

k(s) ds
)

· ∇vk(t) dxdt

+
∫ T

0

∫
Ω

b(x)h(αkv
′
k(t))

αk
vk(t)φ(x)θ(t) dxdt

+
∫ T

0

∫
Ω

f(αkvk(t))
αk

vk(t)φ(x)θ(t)dxdt.

(4.50)
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Combining (4.26), (4.42)–(4.44), (4.49) and (4.50), we infer

lim
k→∞

∫ T

0
θ(t)

∫
Ω

φ(x)κ(x)|∇vk(t)|2dx dt = 0. (4.51)

From (4.49) and (4.51), defining ψ(x, t) = θ(t)φ(x) with θ(t) ∈ C∞
0 (0, T ) and φ(x) ∈ C∞

0 (Ω), where
suppφ ⊂ (Ω\A), we derive

lim
k→∞

∫ T

0

∫
Ω

ψ(x, t)
[
ρ(x)|v′

k|2 + ρ(x)|∇vk|2
]
dx dt = 0. (4.52)

Now, considering ε > 0 small enough and such that 0 ≤ θ ≤ 1, θ = 1 in (ε, T − ε) and supp θ ⊂ (0, T ), then
(4.52) implies

lim
k→∞

∂tvk = 0 in L2((0, T ) × (Ω\A)) and lim
k→∞

∇vk = 0 in [L2((0, T ) × (Ω\A))]n. (4.53)

In what follows, we shall use precisely the results in microlocal analysis recalled in the appendix. Indeed,
let us first consider the microlocal defect measure µ associated with {vk} in H1((0, T ) × (Ω \ A)). Thus,
(4.53) in combination with Remark A.5 imply that µ = 0 in (0, T ) × (Ω\A), that is, suppµ ⊂ A.

On the other hand, from identity (4.21) we have

ρ(x)v′′
k − div[κ(x)∇vk] =

∫ ∞

0
g(s)div[

√
a∇ζt

k(s)]ds− b(x)h(αkv
′
k)

αk
− f(αkvk)

αk
in Ω × (0, T ). (4.54)

Moreover, the convergence (4.26) leads to

lim
k→∞

∫ ∞

0
g(s)

√
a
∂

∂xi
ζt

k(s)ds = lim
k→∞

b(x)h(αkv
′
k)

αk
= 0 in L2(Ω × (0, T )), (4.55)

for each i = 1, . . . , n, from where it follows

lim
k→∞

∂

∂t

∫ ∞

0
g(s)div[

√
a∇ζt

k(s)]ds = lim
k→∞

∂

∂t

[
b(x)h(αkv

′
k)

αk

]
= 0 in H−1(Ω × (0, T )). (4.56)

From this, we also note
lim

k→∞

∂

∂t

f(αkvk)
αk

= 0 in H−1
loc (Ω × (0, T )). (4.57)

Indeed, since H1
0 (Ω) ↪→ L2p(Ω), it follows thatf(αkvk)

αk


L∞(0,T ;L2(Ω))

≤ c∥vk∥L∞(0,T ;L2(Ω)) + cαp−1
k ∥vk∥L∞(0,T ;H1

0 (Ω)),

and then, with  ∂∂t f(αkvk)
αk


H−1(Ω×(0,T ))

≤ c

f(αkvk)
αk


L2(Ω×(0,T ))

,

we obtain (4.57). Therefore, from (4.54), (4.56) and (4.57), yields

□v′
k = ∂

∂t
(ρ(x)v′′

k − div[κ(x)∇vk]) → 0 in H−1
loc (Ω × (0, T )). (4.58)

According to Theorem A.6, the convergence (4.58) implies

suppµ ⊂
{

(t, x, τ, ξ) : τ2 = κ(x)
ρ(x) |ξ|2

}
,

and from Theorem A.9 one obtains that suppµ is the union of curves which are the bicharacteristics of
the principal symbol p(t, x, τ, ξ) = τ2 − κ(x)

ρ(x) |ξ|2. We refer to Appendix A.3 for related definitions and
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characterization of the principal symbol of the wave operator and its bicharacteristics. Since T > T0, every
bicharacteristic ray enters the region ω′ = Ω\A before the time T , and then µ = 0 in Ω . Consequently, we
deduce

lim
k→∞

∂tvk = 0 in L2((0, T ) × Ω). (4.59)

Now, let us show that
lim

k→∞
∇vk = 0 in [L2(Ω × (0, T ))]n. (4.60)

Indeed, multiplying (4.21)1 by θvk, where θ ∈ C∞
0 (0, T ) is such that 0 ≤ θ ≤ 1 and θ = 1 in (ε, T − ε) for

ε ∈ (0, T ) fixed and arbitrary, and integrating in Ω × (0, T ), we obtain

0 = −
∫ T

0
θ(t)

∫
Ω

ρ(x)|v′
k(t)|2 dxdt −

∫ T

0
θ′(t)

∫
Ω

ρ(x)v′
k(t)vk(t) dxdt

+
∫ T

0
θ(t)

∫
Ω

κ(x)|∇vk(t)|2 dxdt

+
∫ T

0

∫ ∞

0
g(s)

∫
Ω

a(x)∇ζt
k(s) · ∇vkθ(t)dxdsdt

+
∫ T

0

∫
Ω

b(x)h(αkv
′
k)

αk
vkθ(t) dxdt

+
∫ T

0

∫
Ω

f(αkvk)
αk

vkθ(t)dxdt.

(4.61)

From (4.26), (4.42)–(4.44), (4.59) and (4.61) we deduce

lim
k→∞

∫ T

0

∫
Ω

θ(t)κ(x)|∇vk|2dxdt = 0,

and since ∫ T −ε

ε

∫
Ω

κ(x)|∇vk|2dxdt ≤
∫ T

0

∫
Ω

θ(t)κ(x)|∇vk|2dxdt, (4.62)

with arbitrary ε > 0, we get (4.60) as desired.
Now, from (2.8) we have

|F (s)| ≤ c|s|2 + c|s|p+1
, ∀s ∈ R,

which implies∫
Ω

⏐⏐⏐⏐F (αkvk(t))
αk

⏐⏐⏐⏐dx ≤ cαk∥vk∥2
L∞(0,T ;L2(Ω)) + cαp

k∥vk∥p+1
L∞(0,T ;Lp+1(Ω)), ∀t ∈ [0, T ],

and then
lim

k→∞

∫ T

0

∫
Ω

F (αkvk(t))
αk

dxdt = 0. (4.63)

From (4.26), (4.59), (4.60) and (4.63) we obtain

lim
k→∞

∫ T

0
Evk,ζk

(t) dt = 0.

Since the energy is non-increasing we have∫ T

0
Evk,ζk

(t) dt ≥ TEvk,ζk
(T ),

which finally proves the desired contradiction limit (4.29).
This completes the proof of Proposition 3.5-I. □
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4.2. Proof of the observability inequality: Part II

Now we prove inequality (3.10) in Proposition 3.5. We follow the same strategy as above but regarding
now that b ≡ 0. In fact, let us suppose that (3.10) does not hold. Thus, there exists a time T > T0 > 0 and
a sequence of solutions (uk, ηk) for (1.1) such that

Euk,ηk
(0) ≤ R (4.64)

and
lim

k→∞

Euk,ηk
(0)∫ T

0

∫ ∞

0
g(s)∥

√
a∇ηt

k(s)∥2dsdt

= +∞, (4.65)

where Euk,ηk
(t) is the energy defined in (3.1) associated with the solution (uk, ηk) of (1.1) with b ≡ 0. Below,

u′
k still denotes ∂tuk. Combining (4.64) and (4.65) we obtain

lim
k→∞

∫ T

0

∫ ∞

0
g(s)∥

√
a∇ηt

k(s)∥2dsd = 0, (4.66)

and following step by step the proof of (4.4), we also obtain

lim
k→∞

∫ T

0

∫ ∞

0
−g′(s)∥

√
a∇ηt

k(s)∥2dsdt = 0. (4.67)

On the other hand, since Euk,ηk
(t) ≤ Euk,ηk

(0) ≤ R, for all t ≥ 0, there exists a subsequence of {(uk, ηk)},
still denoted by{(uk, ηk)}, such that

uk
∗
⇀ u in L∞(0, T ;H1

0 (Ω)), (4.68)
u′

k
∗
⇀ u′ in L∞(0, T ;L2(Ω)), (4.69)

and, by Aubin–Lions’ Theorem,
uk → u in L2(0, T ;L2(Ω)). (4.70)

As before, to reach the expected contradiction we assume two cases as follows.
Case 1: u ̸= 0. For each k ∈ N, (uk, ηk) is the solution of⎧⎨⎩ ρ(x)u′′

k − div[κ(x)∇uk] −
∫ ∞

0
g(s)div[a(x)∇ηt

k(s)] ds+ f(uk) = 0 in Ω × (0, T ),

η′
k = −∂sηk + u′

k in Ω × (0, T ) × (0,∞),
(4.71)

with initial–boundary conditions

uk = 0 on ∂Ω × (0, T ), ηk = 0 on ∂Ω × (0, T ) × (0,∞),
uk(0) = u0k, u

′
k(0) = u1k, η

0
k(s) = η0k(s) in Ω , s ∈ (0,∞), (4.72)

ηt
k(0) = 0 in Ω , t ∈ [0, T ).

As in (4.12), we obtain
f(uk) ⇀ f(u) in L2(0, T ;L2(Ω)), (4.73)

and combining (4.66), (4.68) e (4.73), yields

ρ(x)u′′ − div[κ(x)∇u] + f(u) = 0 in L2(0, T ;H−1(Ω)). (4.74)

Defining again the auxiliary function

zk = κ(x)uk + a(x)
∫ ∞

0
g(s)ηt

k(s) ds, k ∈ N, (4.75)
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and using similar arguments as in (4.18), we also conclude

u′ ≡ 0 a.e. in (Ω \A) × (0, T ). (4.76)

Since u satisfies {
ρ(x)u′′ − div[κ(x)∇u] + f(u) = 0 in Ω × (0, T ),
u′ ≡ 0 in (Ω \A) × (0, T ),

(4.77)

then taking its time derivative and denoting u′ = v, we get{
ρ(x)v′′ − div[κ(x)∇v] + f ′(u)v = 0 in Ω × (0, T ),
v ≡ 0 in (Ω \A) × (0, T ).

(4.78)

According to hypothesis (A5)-(b) one sees that f ′(u) ∈ L∞(0, T ;Ln(Ω)), and using again Theorem A.1, we
have v ≡ 0 in Ω × (0, T ), which implies u′′ ≡ 0 in Ω × (0, T ). Consequently,

div[κ(x)∇u(t)] = −f(u(t)) a.e. in [0, T ]. (4.79)

Multiplying (4.79) by u, integrating by parts on Ω and using the hypothesis (A5)-(a) we obtain

λ1∥u(t)∥2 ≤ β∥u(t)∥2,

from where it follows that
u ≡ 0 in Ω × (0, T ).

This reaches the desired contradiction in Case 1.
Case 2: u = 0. As previously, for each k ∈ N we define

αk =
[
Euk,ηk

(0)
]1/2

, vk = 1
αk

uk, ζk = 1
αk

ηk. (4.80)

Thus, (vk, ζk) is the solution of problem⎧⎨⎩ ρ(x)v′′
k − div[κ(x)∇vk] −

∫ ∞

0
g(s)div[a(x)∇ζt

k(s)] ds+ f(αkvk)
αk

= 0 in Ω × (0, T ),

{ζt
k}′ = −∂sζ

t
k in Ω × (0, T ) × (0,∞),

(4.81)

with initial–boundary conditions

vk = 0 on ∂Ω × (0, T ), ζk = 0 on ∂Ω × (0, T ) × (0,∞),
vk(0) = v0k, v

′
k(0) = v1k, ζ

0
k(s) = ζ0k(s) in Ω , s ∈ (0,∞), (4.82)

ζt
k(0) = 0 in Ω , t ∈ [0, T ).

The energy functional associated with (4.81)–(4.82) is given by

Evk,ζk
(t) = 1

2

∫
Ω

ρ(x)|v′
k(t)|2 dx+ 1

2

∫
Ω

κ(x)|∇vk(t)|2 dx+ 1
2

∫ ∞

0
g(s)∥

√
a∇ζt

k∥2ds

+
∫
Ω

F (αkvk(t))
α2

k

dx, (4.83)

with Evk,ζk
(t) ≥ 0, for all k ∈ N and for every t ∈ [0, T ].

From (4.80) we get

Evk,ζk
(t) = 1

α2
k

Euk,ηk
(t) = 1

Euk,ηk
(0)Euk,ηk

(t), t ∈ [0, T ],

and then
Evk,ζk

(0) = 1, ∀ k ∈ N. (4.84)
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Besides, (4.66) and (4.80) yield

lim
k→∞

∫ T

0

∫ ∞

0
g(s)∥

√
a∇ζt

k∥2dsdt = 0, (4.85)

and from the definition of ζk in (4.80) along with the limit (4.67), we obtain

lim
k→∞

∫ T

0

∫ ∞

0
−g′(s)∥

√
a∇ζt

k∥2dsdt = 0. (4.86)

A straightforward computation shows that the energy functional Evk,ζk
(t) satisfies

d

dt
Evk,ζk

(t) = 1
2

∫ ∞

0
g′(s)∥

√
a∇ζk∥2ds ≤ 0, t ∈ [0, T ],

from where Evk,ηk
(t) is a non-increasing function verifying

Evk,ζk
(0) = Evk,ζk

(T ) + 1
2

∫ T

0

∫ ∞

0
(−g′(s))∥

√
a∇ζt

k∥2dsdt. (4.87)

Passing (4.87) to the limit, when k → ∞, and using (4.84), (4.86) e (4.87), it follows that

1 = lim
k→+∞

Evk,ζk
(0) = lim

k→+∞
Evk,ζk

(T ). (4.88)

Our wish is again to prove
lim

k→+∞
Evk,ζk

(T ) = 0, (4.89)

and the contradiction is also obtained in this case, which completes the proof of (3.10).
In what follows, the effort will be to prove (4.89). Indeed, since Evk,ζk

(t) ≤ Evk,ζk
(0) = 1 for all t ∈ [0, T ],

there exists a subsequence {(vk, ζk)}, still denoted by {(vk, ζk)}, such that

vk
∗
⇀ v in L∞(0, T ;H1

0 (Ω)), (4.90)
v′

k
∗
⇀ v′ in L∞(0, T ;L2(Ω)), (4.91)

vk → v in L2(0, T ;L2(Ω)). (4.92)

Firstly, we show that v ≡ 0 in Ω × (0, T ). Since αk = [Eu,η(0)]1/2, from (4.64) follows that there exists
α ≥ 0 such that αk → α. We consider two situations as follows.

S1. α > 0. Here, combining (4.70) and (4.80) we obtain αkvk → 0 in L2(0, T ;L2(Ω)), and using similar
arguments as used in (4.73) we also see

f(αkvk)
αk

⇀ 0 in L2(0, T ;L2(Ω)).

Using this convergence, (4.85) and passing (4.81)1 to the limit we get

ρ(x)v′′ − div[κ(x)∇v] = 0 in L2(0, T ;H−1(Ω)). (4.93)

Proceeding analogously (4.14)–(4.18) we get v′ ≡ 0 in (Ω \ A) × (0, T ). Thus, for w = v′, it follows that w
satisfies {

ρ(x)w′′ − div[κ(x)∇w] = 0 in Ω × (0, T ),
w ≡ 0 in (Ω \A) × (0, T ).

(4.94)

Since ω′ = Ω \ A satisfies the Geometric Control Condition, from Theorem A.2 it follows that v′ ≡ 0 in
Ω × (0, T ). Using this fact and (4.93) we obtain v ≡ 0 in Ω × (0, T ).
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S2. α = 0. As in (4.35)–(4.36), we have

f(s) = f ′(0)s+R(s), (4.95)

where
|R(s)| ≤ c|s|2 + c|s|p, ∀s ∈ R. (4.96)

From (4.96), the fact α = 0, and since {vn} is bounded in L∞(0, T ;H1
0 (Ω)), we obtain

R(αkvk(t))
αk

→ 0 in L∞(0, T ;L1(Ω)). (4.97)

Passing (4.81)1 to the limit when k → ∞, and using (4.85), (4.95) e (4.97), it follows that

ρ(x)v′′ − div[κ(x)∇v] + f ′(0)v = 0 in L2(0, T ;H−1(Ω)). (4.98)

Let us define
z̃k = κ(x)vk + a(x)

∫ ∞

0
g(s)ζt

k(s) ds, k ∈ N.

Proceeding as in (4.75)–(4.76), we get v′ ≡ 0 in (Ω \ A) × (0, T ). From this fact, (4.98) and Theorem A.1,
we conclude that v′ ≡ 0 in Ω × (0, T ). Besides, by following the same arguments as in (4.39)–(4.41), we get
v ≡ 0 in Ω × (0, T ).

From the above considerations and (4.90)–(4.92) we obtain

vk
∗
⇀ 0 in L∞(0, T ;H1

0 (Ω)), (4.99)
v′

k
∗
⇀ 0 in L∞(0, T ;L2(Ω)), (4.100)

vk → 0 in L2(0, T ;L2(Ω)). (4.101)

Now, let θ ∈ C∞
0 (0, T ) and φ ∈ C∞

0 (Ω) such that suppφ ⊂ (Ω \A). Since suppφ ⊂ (Ω \A), we deduce∫
Ω

(φ(x) + |∇φ(x)|)|ζt
k|2 dx ≤ cφ

∫
Ω

a(x)|∇ζt
k|2 dx. (4.102)

Consider ϕk(x, t) =
∫∞

0 g(s)ζt
k(x, s) ds. Multiplying the first equation in (4.81) by θφ(x)ϕk and integrating

by parts on Ω × (0, T ) we get

−
∫ T

0

∫
Ω

ρ(x)v′
kϕ

′
kφ(x)θ(t) dxdt−

∫ T

0

∫
Ω

ρ(x)v′
kϕkφ(x)θ′(t) dxdt

+
∫ T

0

∫
Ω

κ(x)∇vk · ∇ϕk φ(x)θ(t) dxdt+
∫ T

0

∫
Ω

κ(x)∇vk · ∇φ(x)ϕkθ(t) dxdt

+
∫ T

0

∫ ∞

0
g(s)

∫
Ω

a(x)∇ζt
k(s) · ∇φ(x)ϕkθ(t) dxdsdt

+
∫ T

0

∫ ∞

0
g(s)

∫
Ω

a(x)∇ζt
k · ∇ϕk φ(x)θ(t) dxdsdt

+
∫ T

0

∫
Ω

f(αkvk)
αk

ϕkφ(x)θ(t)dxdt (4.103)

= J1k + J2k + · · · + J6k + J7k = 0.

As in (4.47)–(4.48) we have that lim
k→∞

J2k = · · · = lim
k→∞

J7k = 0. Consequently, lim
k→∞

J1k = 0 and

lim
k→∞

∫ T

0

∫
Ω

ρ(x)θ(t)φ(x)|v′
k|2 dxdt = 0. (4.104)
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Also, multiplying the first equation in (4.81) by θ(t)φ(x)vk and integrating by parts in Ω × (0, T ), we
conclude that

−
∫ T

0
θ(t)

∫
Ω

φ(x)ρ(x)|v′
k(t)|2 dxdt −

∫ T

0
θ′(t)

∫
Ω

φ(x)ρ(x)v′
k(t)vk(t)

+
∫ T

0
θ(t)

∫
Ω

φ(x)κ(x)|∇vk(t)|2 dxdt+
∫ T

0

∫
Ω

κ(x)∇vk · ∇φ(x)vkθ(t)dxdt

+
∫ T

0

∫ ∞

0
g(s)

∫
Ω

a(x)∇ζt
k(s) · ∇φ(x)vkθ(t)dxdsdt

+
∫ T

0
θ(t)

∫
Ω

(∫ ∞

0
g(s)a(x)∇ζt

k(s) ds
)

· ∇vk(t)φ(x) dxdt

+
∫ T

0

∫
Ω

f(αkvk(t))
αk

vk(t)φ(x)θ(t)dxdt = 0.

(4.105)

Combining (4.85), (4.99)–(4.101) and (4.104) with (4.105) we obtain

lim
k→∞

∫ T

0
θ(t)

∫
Ω

φ(x)κ(x)|∇vk(t)|2dx dt = 0. (4.106)

Moreover, from (4.104) and (4.106), defining ψ(x, t) = θ(t)φ(x) with θ(t) ∈ C∞
0 (0, T ) and φ(x) ∈ C∞

0 (Ω)
with suppφ ⊂ (Ω\A), we get

lim
k→∞

∫ T

0

∫
Ω

ψ(x, t)
[
ρ(x)|v′

k|2 + ρ(x)|∇vk|2
]
dx dt = 0.

Observe that if we consider ε > 0 sufficiently small such that 0 ≤ θ ≤ 1, θ = 1 in (ε, T − ε) and
supp θ ⊂ (0, T ), the previous limit yields

lim
k→∞

∂tvk = 0 in L2((0, T ) × (Ω\A)) e lim
k→∞

∇vk = 0 in [L2((0, T ) × (Ω\A))]n. (4.107)

At this moment, we consider again the microlocal defect measure µ associated with {vk} in H1((0, T ) ×
(Ω \A)). Thus, (4.107) and Remark A.5 imply that µ = 0 in (0, T ) × (Ω\A), that is, suppµ ⊂ A.

On the other hand, from (4.81) one has

ρ(x)v′′
k − div[κ(x)∇vk] =

∫ ∞

0
g(s)div[

√
a∇ζt

k(s)]ds− f(αkvk)
αk

in Ω × (0, T ). (4.108)

Since the convergence (4.85) implies

lim
k→∞

∫ ∞

0
g(s)

√
a
∂

∂xi
ζt

k(s)ds = 0 in L2(Ω × (0, T )),

for each i = 1, . . . , n, then

lim
k→∞

∂

∂t

∫ ∞

0
g(s)div[

√
a∇ζt

k(s)]ds = 0 in H−1(Ω × (0, T )).

Also, using similar arguments as in (4.57) we have

lim
k→∞

∂

∂t

f(αkvk)
αk

= 0 in H−1
loc (Ω × (0, T )).

From (4.108) one sees

□v′
k = ∂

∂t
(ρ(x)v′′

k − div[κ(x)∇vk]) → 0 in H−1
loc (Ω × (0, T )). (4.109)
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Thus, Theorem A.6 along with (4.109) imply

suppµ ⊂
{

(t, x, τ, ξ) : τ2 = κ(x)
ρ(x) |ξ|2

}
.

Moreover, from Theorem A.9, suppµ is the union of curves which are bicharacteristics of the principal
symbol p(t, x, τ, ξ) = τ2 − κ(x)

ρ(x) |ξ|2, see again the definition and results in Appendix A.3. Since T > T0,
every characteristic ray enters the region ω′ = Ω\A before time T , implying that µ = 0 everywhere in Ω .
Consequently,

lim
k→∞

∂tvk = 0 in L2((0, T ) × Ω). (4.110)

Now we are going to prove
lim

k→∞
∇vk = 0 in [L2(Ω × (0, T ))]n. (4.111)

Indeed, multiplying (4.81)1 by θvk, where θ ∈ C∞
0 (0, T ) is such that 0 ≤ θ ≤ 1 and θ = 1 in (ε, T − ε) for

some arbitrary ε ∈ (0, T ), and integrating on Ω × (0, T ) we have

−
∫ T

0
θ(t)

∫
Ω

ρ(x)|v′
k(t)|2 dxdt −

∫ T

0
θ′(t)

∫
Ω

ρ(x)v′
k(t)vk(t) dxdt

+
∫ T

0

∫ ∞

0
g(s)

∫
Ω

a(x)∇ζt
k(s) · ∇vkθ(t)dxdsdt

+
∫ T

0

∫
Ω

f(αkvk)
αk

vkθ(t)dxdt = 0.

(4.112)

Combining (4.85), (4.99)–(4.101), (4.110) and (4.112) we get

lim
k→∞

∫ T

0

∫
Ω

θ(t)κ(x)|∇vk|2dxdt = 0,

and since ∫ T −ε

ε

∫
Ω

κ(x)|∇vk|2dxdt ≤
∫ T

0

∫
Ω

θ(t)κ(x)|∇vk|2dxdt, (4.113)

with arbitrary ε > 0, we infer that (4.111) holds true.
Similar to (4.63), it follows that

lim
k→∞

∫ T

0

∫
Ω

F (αkvk(t))
αk

dxdt = 0, (4.114)

and the convergences (4.85), (4.110), (4.111) and (4.114) lead to

0 = lim
k→∞

∫ T

0
Evk,ζk

(t) dt ≥ T lim
k→∞

Evk,ζk
(T ),

which gives the desired contradiction limit (4.89).
This completes the proof of Proposition 3.5-II. □

4.3. Proof of the main result

We are now ready to prove Theorem 3.3. We first deal with part I and the second item II follows verbatim
by using the same arguments and neglecting the frictional damping.
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4.3.1. Proof of Theorem 3.3-I
Initially, we note that from Proposition 3.5 and the semigroup property for the solution of problem (1.1),

there exists a constant C = C(R, T ) > 0 such that, for each m = 0, 1, . . .,

Eu,η(mT ) ≤ C

∫ (m+1)T

mT

{∫ ∞

0
g(s)∥

√
a∇ηt∥2ds+

∫
Ω

b(x)[|ut(x, t)|2 + |h(ut(x, t))|2] dx
}
dt. (4.115)

In what follows, we are going to estimate each term on the right side of (4.115).
1st. Frictional term. According to Remark 2.1-3 there exists a convex strictly increasing function H :

[0,∞) → [0,∞) that vanishes at the origin and such that

s2 + [h(s)]2 ≤ H−1(sh(s)), for all |s| ≤ 1.

Now, let us consider the following sets

D1,m = {(x, t) ∈ Ω × (mT, (m+ 1)T ); |ut(x, t)| ≤ 1} and D2,m = Ω × (mT, (m+ 1)T ) \D1,m.

For each m = 0, 1, 2, . . ., we have

|ut(x, t)|2 + |h(ut(x, t))|2 ≤ H−1(ut(x, t)h(ut(x, t))), ∀ (x, t) ∈ D1,m,

and
|ut(x, t)|2 + |h(ut(x, t))|2 ≤

(
1
M1

+M2

)
ut(x, t)h(ut(x, t)), ∀ (x, t) ∈ D2,m.

Thus, ∫ (m+1)T

mT

∫
Ω

b(x)[|ut|2 + |h(ut)|2]dxdt ≤
∫ (m+1)T

m

∫
Ω

b(x)H−1(h(ut)ut)dxdt

+
(

1
M1

+M2

)∫ (m+1)T

mT

∫
Ω

b(x)h(ut)utdxdt.

Let H̃ : [0,∞) → [0,∞) be given by H̃(s) = T∥b∥L1(Ω)H

(
1

T∥b∥L1(Ω)
s

)
. From Jensen’s inequality and

denoting D(t) = −E′(t) we get∫ (m+1)T

mT

∫
Ω

b(x)[|ut|2 + |h(ut)|2]dxdt

≤
(
H̃−1 +

(
1
M1

+M2

)
Id

)[∫ (m+1)T

mT

∫
Ω

b(x)h(ut)utdxdt

]
≤
(
H̃−1 +

(
1
M1

+M2

)
Id

)[∫ (m+1)T

mT

D(t)dt
]
.

(4.116)

2nd. Memory term. Since∫ (m+1)T

mT

∫ ∞

0
g(s)∥

√
a∇ηt(s)∥2dsdt =

∫ (m+1)T

mT

∫ ∞

0
(−g′(s))

α0
p2

g(s)

(−g′(s))
α0
p2

∥
√
a∇ηt(s)∥2dsdt,

then from Jensen’s inequality and 0 < α0

p2
< 1, we deduce∫ (m+1)T

mT

∫ ∞

0
(−g′(s))

α0
p2

g(s)

(−g′(s))
α0
p2

∥
√
a∇ηt(s)∥2dsdt

≤
∫ (m+1)T

mT

[∫ ∞

0

g(s)

(−g′(s))
α0
p2

∥
√
a∇ηt(s)∥2ds

]1− α0
p2
[∫ ∞

0
(−g′(s)) g(s)

(−g′(s))
α0
p2

∥
√
a∇ηt(s)∥2ds

]α0
p2

dt.
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In addition, from condition (2.6) in assumption (G1), we deduce

g(s)

(−g′(s))
α0
p2

≤ 1

C
α0
p2

2

g(s)1−α0 , ∀s ≥ 0, (4.117)

and then∫ (m+1)T

mT

∫ ∞

0
g(s)∥

√
a∇ηt(s)∥2dsdt

≤
∫ (m+1)T

mT

⎡⎣∫ ∞

0

g(s)1−α0

C
α0
p2

2

∥
√
a∇ηt(s)∥2ds

⎤⎦1− α0
p2
⎡⎣∫ ∞

0
(−g′(s))g(s)1−α0

C
α0
p2

2

∥
√
a∇ηt(s)∥2ds

⎤⎦
α0
p2

dt

≤ g(0)(1−α0) α0
p2

C
α0
p2

2

(
sup
t≥0

∫ ∞

0
g(s)1−α0∥

√
a∇ηt(s)∥2ds

)1− α0
p2
∫ (m+1)T

mT

D(t)
α0
p2 dt.

Now, we claim that (
sup
t≥0

∫ ∞

0
g(s)1−α0∥

√
a∇ηt(s)∥2ds

)
< ∞. (4.118)

This is the precise moment where we use the boundedness condition sup
τ<0

∥
√
a∇u0(τ)∥ < R and the

assumption (G2), see (2.7). Indeed, from this and recalling (1.2), we have for all t > s that

∥
√
a∇ηt(s)∥2 ≤ 2∥

√
a∥2

L∞(Ω)(∥∇u(t)∥2 + ∥∇u(t− s)∥2)

≤ 2
l2

∥
√
a∥2

L∞(Ω)(∥u(t)∥2
1 + ∥u(t− s)∥2

1)

≤ 8
l2

∥
√
a∥2

L∞(Ω)Eu,η(0)

≤ 8
l2

∥
√
a∥2

L∞(Ω)R.

Besides, for all t ≤ s we infer

∥
√
a∇ηt(s)∥2 ≤ 2∥

√
a∥2

L∞(Ω)∥∇u(t)∥2 + 2∥
√
a∇u0(t− s)∥2

≤ 4
l2

∥
√
a∥2

L∞(Ω)Eu,η(0) + 2 sup
τ<0

∥
√
a∇u0(τ)∥2

≤ 4
l2

∥
√
a∥2

L∞(Ω)R+ 2R2.

Thus, in view of (2.7), we obtain

sup
t≥0

∫ ∞

0
g(s)1−α0∥

√
a∇ηt(s)∥2ds ≤

(
12
l2

∥
√
a∥2

L∞(Ω)R+ 2R2
)∫ ∞

0
g(s)1−α0ds < ∞,

which proves (4.118).
Now, using Jensen’s inequality again, we deduce

∫ (m+1)T

mT

D(t)
α0
p2 dt ≤ T

[
1
T

∫ (m+1)T

mT

D(t)dt
]α0

p2

,
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and then ∫ (m+1)T

mT

∫ ∞

0
g(s)∥

√
a∇ηt(s)∥2dsdt

≤ g(0)(1−α0) α0
p2

C
α0
p2

2

(
sup
t≥0

∫ ∞

0
g(s)1−α0∥

√
a∇ηt(s)∥2ds

)1− α0
p2
[

1
T

∫ (m+1)T

mT

D(t)dt
]α0

p2

.

Defining J : [0,∞) → [0,∞) by

J(s) = g(0)(1−α0) α0
p2

C
α0
p2

2

(
sup
t≥0

∫ ∞

0
g(r)1−α0∥

√
a∇ηt(r)∥2dr + 1

)1− α0
p2
T
( s
T

)α0
p2

which is a strictly increasing positive function such that J(0) = 0, we get∫ (m+1)T

mT

∫ ∞

0
g(s)∥

√
a∇ηt(s)∥2dsdt ≤ J

(∫ (m+1)T

mT

D(t)dt
)
. (4.119)

Therefore, from (4.115), (4.116) and (4.119), we obtain

Eu,η(mT ) ≤ C

[
J + H̃−1 +

(
1
M1

+M2

)
Id

] ∫ (m+1)T

mT

D(t)dt,

and setting

H3 = C

[
J + H̃−1 +

(
1
M1

+M2

)
Id

]
, (4.120)

we have

Eu,η(mT ) ≤ H3

(∫ (m+1)T

mT

D(t)dt
)
.

Using that Eu,η is non-increasing, it follows that

Eu,η((m+ 1)T ) ≤ H3

(∫ (m+1)T

mT

D(t)dt
)
,

and recalling that D(t) = −E′(t), we arrive at

Eu,η((m+ 1)T ) +H−1
3 (Eu,η((m+ 1)T )) ≤ Eu,η(mT ), ∀T > T0. (4.121)

Therefore, applying [37, Lemma 3.3] with

sm = Eu,η(mT ), s0 = Eu,η(0), p1 = H−1
3 with H3 given in (4.120),

we conclude that Eu,η(t) satisfies (3.5), where S(t) is the solution of (3.6) with q1(s) = s− (Id+ p1)−1(s).
This completes the proof of Theorem 3.3-I. □

4.3.2. Proof of Theorem 3.3-II
In this case, we remark that (4.115) holds true with b ≡ 0 and proceeding analogously as in the estimates

for the memory term, we achieve (4.121) with H3 set in (4.120) just given by H3 = CJ and p2 = H−1
3 . Hence,

the same conclusion can be done with no change, namely, one can conclude that Eu,η(t) satisfies (3.7), where
S(t) is the solution of (3.8) with q2(s) = s− (Id+ p2)−1(s). This finishes the proof of Theorem 3.3-II. □
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Appendix. Auxiliary results

In order to make this paper more self-contained, we collect some important and useful results, which have
been crucial in the conclusion of our proofs.

A.1. Two essential results in the literature

We start with an important unique continuation result. It can be found in Koch and Tataru [40].

Theorem A.1. Let P be a second order hyperbolic operator with coefficients of class C2. Let Γ be a smooth
surface strongly pseudoconvex with respect to P . Then, the unique continuation of P +V in Γ is valid for all
potential V ∈ L

(n+1)
2 , where n is the dimension of Rn.

When the Geometric Control Condition (GCC)) is taken into account, then problem (1.1) can be
stabilized by only using the memory term, that is, b ≡ 0. To this end, an important result is presented
by Burq and Gérard [41].

Theorem A.2. Consider ρ, κ ∈ C∞(Ω) and let ω′ be a subset of a given set Ω ⊂ Rn which satisfies the GCC.
Besides that, let (u0, u1) ∈ L2(Ω) × H−1(Ω) and u ∈ C0(R;L2(Ω)) satisfying that ρ(x)u ∈ C1(R;H−1(Ω))
is the ultra-weak solution of ⎧⎨⎩

ρ(x)u′′ − div[κ(x)∇u] = 0 in Ω × (0,∞),
u = 0 in ∂Ω × (0,∞),
u(0) = u0 ∈ L2(Ω); ρ(x)u′(0) = u1 ∈ H−1(Ω).

(A.1)

Then,

∥u0∥2
L2(Ω) + ∥u1∥2

H−1(Ω) ≤ C

∫ T

0

∫
ω′

|u(x, t)|2dxdt, (A.2)

for all T > T0.

A.2. A short review on microlocal analysis

In what follows, we are going to present some results in microlocal local analysis develop in [39,41]. We
also refer to [1] (see Appendix therein) for a more complete review of the results to be presented below and
the explanation of how to apply such results in the present framework.

Theorem A.3. Let {un}n∈N be a bounded sequence in L2
loc(Ω) such that it converges weakly to zero in

L2
loc(Ω). Then, there exist a subsequence {uφ(n)} and a positive Radon measure µ on T 1Ω := Ω × Sn−13

such that for all pseudo-differential operator A of order 0 on Ω which admits a principal symbol σ0(A) ≥ 0
(i.e. A ∈ Ψ0

c (Ω) and, in addition, σ0(A) ≥ 0) and for all χ ∈ C∞
0 (Ω) such that χσ0(A) = σ0(A), one has(

A(χuφ(n)), χuφ(n)
)

L2 −→
n→+∞

∫
Ω×Sn−1

σ0(A)(x, ξ) dµ(x, ξ). (A.3)

3 The notation Sd stands for the d-dimensional unitary sphere.
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Definition A.4. Under the hypotheses of Theorem A.3 µ is called the Microlocal Defect Measure (in short,
MDM) of the sequence {uφ(n)}n∈N.

Remark A.5. Theorem A.3 assures that for all bounded sequence {un}n∈N ∈ L2
loc(Ω) such that it converges

weakly to zero in L2
loc(Ω), there exists a subsequence {uφ(n)} admitting a microlocal defect measure. We

observe that from (A.3), in the particular case when A = f ∈ C∞
0 (Ω), it follows that∫

Ω×Sn−1
f(x)|uφn(x)|2 dx −→

n→+∞

∫
Ω×Sn−1

f(x) dµ(x, ξ). (A.4)

Then, uφn converges to zero if, and only if, µ = 0.

Theorem A.6. Let P be a differential operator of order m on Ω and let {un} be a bounded sequence of
L2

loc(Ω) which converges weakly to 0 and admits a m.d.m. µ. The following statements are equivalents:

(i) Pun −→
n→+∞

0 strongly in H−m
loc (Ω) (m > 0).

(ii) supp(µ) ⊂ {(x, ξ) ∈ Ω × Sn−1 : σm(P )(x, ξ) = 0}.

Remark A.7. Let P be a differential operator on Ω of order m with smooth coefficients and let {un}n

be a bounded sequence of L2
loc(Ω) with a microlocal defect measure µ. Then, Theorem A.6 states that

Pun −→
n→+∞

0 strongly in H−m
loc (Ω) (m > 0) if and only if µ is supported by the characteristic set of P ,

that is, σm(P )µ = 0. Hence, Theorem A.6 provides a localization of the support of µ under a very weak
assumption on {Pun}. The next theorem shows that, under a slightly stronger assumption, the Hamiltonian
Hp of the principal symbol of P satisfies an integral equation on Ω × Sn−1, namely:∫

Ω×Sd−1
Hpa dµ = 0, where p = σm(P ),

for all a ∈ C∞(Ω×(Rn\{0})) homogeneous of degree 1−m in the second variable and with compact support
in the first one.

Theorem A.8. Let P be a differential operator of order m on Ω , verifying P ∗ = P , and let {un} be
a bounded sequence in L2

loc(Ω) which converges weakly to 0 and it admits a m.d.m. µ. Let us assume that
Pun −→

n→+∞
0 strongly in H1−m

loc (Ω). Then, for all homogeneous function a ∈ C∞(Ω × Rn\{0}) of degree
1 −m in the second variable and with compact support in the first one, we have∫

Ω×Sn−1
{a, p}(x, ξ) dµ(x, ξ) = 0. (A.5)

Theorem A.9. Let P be a self-adjoint differential operator of order m on Ω which admits a principal
symbol p. Let {un} be a bounded sequence in L2

loc(Ω) which converges weakly to zero, with a microlocal defect
measure µ. Let us assume that Pun converges to 0 in H

−(m−1)
loc (Ω). Then the support of µ, supp(µ), is a

union of curves like s ∈ I ↦→
(
x(s), ξ(s)

|ξ(s)|

)
, where s ∈ I ↦→ (x(s), ξ(s)) is a bicharacteristic of p.

A.3. Principal symbol of the wave operator

This final section is devoted to the explanation of how to apply the above abstract results to characterize
the bicharacteristics of the principal symbol of the wave operator related to our problem. The next
statements follow the same lines as done in [1, Section 5].
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Let us consider the wave operator

ρ(x)∂2
t −

d∑
j=1

∂xj

[
κ(x)∂xj

]
.

Under the notation Dj = 1
i ∂j , we write

P (t, x,Dt, Dx) = −ρ(x)D2
t +

d∑
j=1

Dxj
[κ(x)Dxj

], Dx = (Dx1 , . . . , Dxd
),

whose principal symbol p(t, x, τ, ξ) is given by

p(t, x, τ, ξ) = −ρ(x)τ2 + κ(x) ξ · ξ, ξ = (ξ1, . . . , ξd), (A.6)

where t ∈ R, x ∈ Ω ⊂ Rn, (τ, ξ) ∈ R × Rn, and κ(x) := 1 − g0a(x) is the C∞ function on Ω verifying

1 ≥ κ(x) ≥ 1 − g0∥a∥∞ := l > 0,

since we are assuming that l := 1 − g0∥a∥∞ > 0, where g0 :=
∫∞

0 g(s) ds.
Let us describe the bicharacteristics of p. They do not change if we multiply p by a non-null function

p̃(t, x, τ, ξ) = 1
2

(
κ(x)
ρ(x) ξ · ξ − τ2

)
. (A.7)

From this, we have ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṫ = ∂p̃

∂τ
= −τ,

ẋ = ∂p̃

∂ξ
= κ(x)
ρ(x) ξ,

τ̇ = −∂p̃

∂t
= 0,

ξ̇ = −∂p̃

∂x
= −1

2∇
(
κ

ρ

)
(x)(ξ · ξ).

(A.8)

Introducing the function G(x) := ρ(x)
κ(x) , the above equations become

ξ = G(x)ẋ, (A.9)

which implies

ξ̇ = (G(x)ẋ)· = −1
2∇

(
κ

ρ

)
(x) ⟨G(x)ẋ, G(x)ẋ⟩

= −1
2∇

(
κ

ρ

)
(x)G2(x) ⟨ẋ, ẋ⟩ (A.10)

= −1
2∇ [G(x)]−1

G2(x) ẋ · ẋ

= 1
2∇G(x) ẋ · ẋ.

where we have used the notation ⟨x, ξ⟩ = x · ξ. Once p̃ is null on each of its bicharacteristic curves, from
(A.7) we deduce that

κ(x) ξ · ξ = τ2 = constant on the curve, (A.11)

On the other hand, equalities (A.8) and (A.9) yield

G(x)ẋ · ẋ = κ(x)
ρ(x) ξ · ξ. (A.12)
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Combining (A.11) and (A.12) we deduce

G(x)ẋ · ẋ = κ(x) ξ · ξ = τ2 = constant on the curve, (A.13)

that is, the quantity G(x) ẋ · ẋ is preserved under the flow. From (A.10) and (A.13) we have

d

ds

G(x)ẋ√
G(x) ẋ · ẋ

= 1
2

∇G(x) ẋ · ẋ√
G(x) ẋ · ẋ

, (A.14)

and setting
L(x, ẋ) :=

√
G(x) ẋ · ẋ,

the last identity yields
d

ds

∂

∂ẋ
L(x, ẋ) = ∂

∂x
L(x, ẋ),

which is the Euler–Lagrange equation associated with L, namely, the geodesic equation for the metric G
of Ω . Conversely, if α ↦→ x(α) is a geodesic for the metric G on Ω , and parameterizing the curve x by the
curvilinear abscissa σ defined by

dσ

dα
=
√
G(x(α)) ẋ(α) · ẋ(α), (A.15)

Eq. (A.14) becomes
d

dσ

(
G(x)dx

dσ

)
= 1

2∇G(x) dx
dσ

· dx
dσ
, (A.16)

with
G(x) dx

dσ
· dx
dσ

= 1.

If we set, for instance, s = − σ
τ , we obtain (A.8), (A.9) and (A.10). In addition, we note that dt

dσ = 1. In
conclusion, we have proved the following result.

Proposition A.10. Unless a change of variables is needed, the bicharacteristics of (A.6) are curves of the
form

t ↦→

(
t, x(t), τ,−τ

(
κ(x(t))
ρ(x(t))

)−1
ẋ(t)

)
,

where t ↦→ x(t) is a geodesic of the metric G =
(

κ
ρ

)−1
on Ω , parameterized by the curvilinear abscissa. □
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