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Let L = ∂t + a(x)∂x be a real vector field defined on the two-dimensional torus 
T2, where a is a real-valued and smooth function on T1. We deal with the global 
solvability of equations in the form Lu + pu = f , where p, f ∈ C∞(T2). Solvability
to the equation Lu = f is well-understood. We show that a perturbation of zero 
order may affect the global solvability of L; we may maintain, gain or lose solvability 
by adding a perturbation. This phenomenon is linked to the order of vanishing of 
the coefficient a of L. We obtained results in the class of smooth functions on T2

and, also, in the space of Schwartz distributions D′(T2).
© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Let L be a nonsingular real vector field defined on a smooth n-dimensional manifold M .
We are interested in solving equations in the form

Lu + pu = f, (1.1)

where p, f and u are complex-valued smooth functions defined on M . The space of such functions will be 
denoted by C∞(M).

It follows from tubular flow theorem that locally (1.1) always has smooth solutions.
The solvability of (1.1) is still an interesting problem if we seek for global solutions.
For p ∈ C∞(M), we define Lp : C∞(M) → C∞(M) by Lpu = Lu + pu.
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In the case where M is noncompact, paracompact, Malgrange in [15] and also Duistermaat and Hörmander 
in [10] presented necessary and sufficient conditions to obtain Lp(C∞(M)) = C∞(M).

Malgrange showed essentially that LpC∞(M) = C∞(M) is equivalent to the following geometric condition:

(GC) (i) No complete integral curve of L is relatively compact;
(ii) For every compact subset K of M there exists a compact subset K ′ of M such that every compact 

interval on an integral curve with end points in K is contained in K ′.

Duistermaat and Hörmander proved that (GC) is equivalent to

(iii) There exists a manifold M0, an open neighborhood M1 of M0 × {0} in M0 × R which is convex 
in the R direction, and a diffeomorphism M → M1 which carries L into the operator ∂/∂t, where 
points in M1 are denoted by (x, t).

Comparing with local solvability, under (GC) the zero order term in Lp does not play a relevant role in 
the global solvability.

There is no general result about global solvability of Lp in the case where M is compact.
We will address global solvability issues for zero order perturbations of certain real vector fields on the 

2-dimensional torus, T 2 � R2/2πZ2.
Denoting the coordinates in T 2 by (x, t) ∈ T 1 × T 1, we consider the real vector field given by

L0 = ∂t + a(x)∂x, (1.2)

where a is a real-valued and smooth function on T 1.
In [6], Bergamasco and Petronilho characterized the closedness of the range (global solvability) of L0. By 

Theorem 1.1 in [6], L0 is globally solvable if and only if one of the following conditions holds:

• a vanishes identically;
• a never vanishes and (2π)−1 ∫ 2π

0 (1/a) is either rational or non-Liouville irrational;
• ∅ �= a−1(0) �= T 1 and a vanishes only of finite order.

One of the motivations for this work was a question posed by Adalberto Bergamasco and José Ruidival 
dos Santos Filho to the second author concerning some results in the paper [6]. As mentioned in [6] without 
a detailed proof, the operator ∂t + a(x)∂x + a′(x) is globally solvable on C∞(T 2).

Our purpose here is to study the influence of a perturbation of L0 by a zero order term in the existence 
of global solutions. We consider differential operators

Lp = ∂t + a(x)∂x + p(x), (1.3)

defined on T 2, where a is a real-valued and smooth function on T 1, and p is a complex-valued and smooth 
function on T 1.

As in [6], we say that Lp is globally solvable on C∞(T 2) if its range LpC∞(T 2) is a closed subspace of 
C∞(T 2). By standard arguments of Functional Analysis, Lp is globally solvable if and only if LpC∞(T 2) =
(ker tLp)◦, where tLp denotes the transpose operator and (ker tLp)◦ is the set of functions φ ∈ C∞(T 2) such 
that μ(φ) = 0, for all μ ∈ ker tLp ⊂ D′(T 2).

We will also consider the global solvability problem in the space of Schwartz distributions D′(T 2). We 
say that Lp is globally solvable on D′(T 2) if LpD′(T 2) = ◦(kerLa′−p), in which La′−p : C∞(T 2) → C∞(T 2)
is given by La′−p = ∂t + a(x)∂x + a′(x) − p(x) and ◦(kerLa′−p) is the space of distributions ν ∈ D′(T 2)
such that 〈ν, φ〉 = 0, for all φ ∈ kerLa′−p.
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In contrast to the previously mentioned results of Malgrange, Duistermaat and Hörmander, in our context 
the zero order perturbation p has a direct bearing on the closed range property for Lp.

Our first contribution is to show that we may lose, maintain, or gain solvability when we add a pertur-
bation of zero order in the operator L0. This is the subject of Section 2, where the global solvability of Lp

is characterized in the case where the coefficient a never vanishes.
In Section 3 we show that Lp is globally solvable, provided that a−1(0) �= ∅ and a vanishes only of finite 

order. This is our main result in this article. When 
p vanishes as much as a at the points in a−1(0), then 
we may use the approach in [6]; however, the proof of certain results needs a careful treatment (compare, 
for instance, the proof of Proposition 3.1 with the proof of Lemma 2.1 in [6]). When the difference between 
the order of vanishing of a and the order of vanishing of 
p, at some point in a−1(0), is greater than one, 
then we use certain techniques which appear in [4] and [11]. The biggest novelty appears when there exist 
points in a−1(0), where the difference between the order of vanishing of a and the order of vanishing of 
p
is one. This is a critical case which is related to other critical cases that appear in [2], [4], and [7]. To treat 
these critical cases, we need an improvement of techniques of [6] and we also need a new approach, which 
is presented in Case 5, in the proof of Theorem 3.4.

We also notice in Section 3 that the global solvability may become stronger on C∞(T 2), by the action of the 
perturbation, i.e., LpC∞(T 2) may have finite codimension, while L0C∞(T 2) has infinite codimension. On the 
other hand, we show that the surjectivity of L0 : D′(T 2) → D′(T 2) may be affected, i.e., LpD′(T 2) � D′(T 2)
for certain perturbations p. Hence, the solvability on D′(T 2) may become weaker by the action of the 
perturbation.

Finally, in Section 4 we give further results considering the existence of points at which the coefficient a
is flat. In the case where a vanishes identically we show that the zero order perturbation p may destroy the 
global solvability of L0 (see Theorem 4.2).

The questions addressed here are within the spirit of those contained in the articles [1,5,7–9,12–14,16].

2. Coefficient a never vanishing

When a never vanishes, it follows from [6] that L0 = ∂t + a(x)∂x is globally solvable if and only if the 
mean (1/2π) 

∫ 2π
0 (1/a) is either a rational or a non-Liouville irrational number. Recall that an irrational 

number α is said to be a Liouville number if there exists a sequence (pn, qn) ∈ Z × N such that qn → ∞
and |pn + αqn| < qnn , for all n ∈ N.

We will see that the perturbations Lp = ∂t + a(x)∂x + p(x) may maintain, lose or gain solvability.
In order to present the main result of this section, we denote by θ0 the mean of a function θ ∈ C∞(T 1), 

that is, θ0 = (1/2π) 
∫ 2π
0 θ(s)ds.

Theorem 2.1. Let Lp be the operator given by (1.3). Suppose that a never vanishes. In this case, Lp is globally 
solvable (on either C∞(T 2) or D′(T 2)) if and only if there exist positive constants C and γ such that

|j + k(1/a)0 + (�p/a)0 − i(
p/a)0| ≥ C(|j| + |k|)−γ ,

for all (j, k) ∈ Z2 \ {(0, 0)} such that j + k(1/a)0 + (�p/a)0 − i(
p/a)0 �= 0.

Before writing the proof, we would like to discuss certain implications of the above result.
Next example shows that the perturbation p may maintain the global solvability of L0.

Example 2.2. If (1/a)0 is a rational number, then L0 is globally solvable and any perturbation Lp is still 
globally solvable (the a priori estimate presented in Theorem 2.1 is satisfied). For instance, ∂t + (1 +π)(1 +
cos2(x))−1∂x + p(x) is globally solvable for any p ∈ C∞(T 1).
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The same situation occurs (both L0 and any perturbation Lp are globally solvable) if (1/a)0 is a non-
Liouville irrational number and (�p/a)0 is a rational number. For instance, ∂t −

√
2(2 − sin(x))−1∂x and 

∂t −
√

2(2 − sin(x))−1∂x + i(π
√

2)−1 sin(x) are globally solvable.

In certain cases, we may have a non-globally solvable vector field L0 with a perturbation Lp which is 
globally solvable.

Example 2.3. When (
p/a)0 �= 0, then Theorem 2.1 implies that any perturbation Lp is globally solvable. 
Hence, if (1/a)0 is either rational or a non-Liouville irrational number, then the perturbation Lp maintains 
the global solvability of L0. On the other hand, if (1/a)0 is a Liouville irrational number, then L0 is not 
globally solvable, but Lp is globally solvable. It follows that we may obtain a globally solvable operator 
by considering a perturbation of zero order of the non-globally solvable vector field L0. This situation also 
occurs when (
p/a)0 = 0. For instance, if (
p0/a) = 0, (�p/a)0 = −1/2, and (1/a)0 = −β, in which β is 
the Liouville number constructed in Example 4.4 in [1], then L0 is not globally solvable, while Lp is globally 
solvable. In particular, ∂t−2β−1(2 − sin(x))−1∂x is not globally solvable, while ∂t−2β−1(2 − sin(x))−1∂x +
i(2β)−1 is globally solvable.

May we obtain a non-globally solvable operator by considering a perturbation of zero order of a globally 
solvable vector field L0? The answer is positive. As we have already noticed, to find operators satisfying 
this property, p must satisfy (
p/a)0 = 0 and (�p/a)0 must be an irrational number. In addition, if (1/a)0
is an irrational number, then the a priori estimate presented in Theorem 2.1, also characterizes the global 
hypoellipticity of the operator ∂t+(1/a)0∂x+i(�p/a)0, which is an issue treated in [1]. Applying Proposition 
3.5 in [1], we see that the set of functions p such that Lp is not globally solvable contains a dense Gδ. Hence, 
in the sense of Baire category, there are many perturbations (of a globally solvable vector field) which are 
not globally solvable.

We now proceed to prove Theorem 2.1: Since a never vanishes, the global solvability of Lp is equivalent 
to the global solvability of (1/a)Lp. On the other hand, in the new coordinates X = x and T = t +(1/a)0 −∫ x

0 (1/a), operator (1/a)Lp becomes ∂X + (1/a)0∂T + (p/a). The global solvability of this last operator is 
equivalent to the global solvability of ∂T + α∂X + α(p/a), in which α = (1/a)−1

0 . The proof now follows by 
applying Propositions 2.4 and 2.5 below.

Proposition 2.4. The operator L = ∂t + λ∂x + ρ(x), where λ ∈ R \ {0} and ρ ∈ C∞(T 1), is globally solvable 
on C∞(T 2) if and only if there exist positive constants C and γ such that

|k + jλ + (�ρ)0 − i(
ρ)0| ≥ C(|j| + |k|)−γ , (2.1)

for all (j, k) ∈ Z2 \ {(0, 0)} such that k + jλ + (�ρ)0 − i(
ρ)0 �= 0.

Proof. For each k ∈ Z, define

ck
.= 1

2π

2π∫
0


ρ(s) + i(k + �ρ(s))
λ

ds.

Applying Lemma 3.1 of [3], it follows that (2.1) is equivalent to the following condition: there exist 
positive constants C and γ such that

|1 − exp{−2πck}| ≥ C(|k| + 1)−γ ,

for all k ∈ Z such that ck /∈ iZ.
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Necessity:
If (2.1) fails to hold, then there exists a sequence (kn) ⊂ Z such that |kn+1| > |kn| > n, ckn

/∈ iZ, and 
0 < |1 − exp{−2πckn

}| < (1 + |kn|)−n, for all n ∈ N.
Let f̂(x, kn) be the 2π-periodic extension of

λ(1 + |kn|)−n/2φ(x) exp

⎧⎨⎩
π∫

x


ρ(s) + i(kn + �ρ(s))
λ

ds

⎫⎬⎭ , t ∈ [0, 2π],

in which φ ∈ C∞
c ((π/2) − ε, (π/2) + ε), 0 ≤ φ(x) ≤ 1, φ ≡ 1 on [(π − ε)/2, (π + ε)/2], and ε > 0 is small 

enough so that ((π/2) − ε, (π/2) + ε) ⊂ (0, π).
We claim that the function f , given by

f(x, t) =
∞∑

n=1
f̂(x, kn) exp{iknt},

belongs to (ker tL)◦ \ LC∞(T 2).
Notice that the term (1 + |kn|)−n/2 yields the rapid decaying of f̂(·, kn). Hence f ∈ C∞(T 2). In addition, 

if μ ∈ ker tL, then μ̂(x, −kn) = 0, since ckn
/∈ iZ. Therefore, f ∈ (ker tL)◦.

To complete the proof of necessity, we will show that f cannot belong to LC∞(T 2).
Suppose that there exists u ∈ C∞(T 2) solution to Lu = f . By using partial Fourier series in the variable 

t we obtain

∂xû(x, kn) + 1
λ

(ikn + p(x))û(x, kn) = f̂(x, kn)/λ, x ∈ T 1, n ∈ N.

Since ckn
/∈ iZ, each of the above equations has a unique solution in C∞(T 1), which may be written as

û(x, kn) = Cn

2π∫
0

exp

⎧⎨⎩−
x∫

x−y


ρ(s) + i(kn + �ρ(s))
λ

ds

⎫⎬⎭λ−1f̂(x− y, kn)dy, (2.2)

with Cn = (1 − exp{−2πckn
})−1.

The definition of f̂(x, kn) implies that, for x ∈ [π, 2π], we have

C−1
n exp

⎧⎨⎩
x∫

π


ρ(s) + i(kn + �ρ(s))
λ

ds

⎫⎬⎭ û(x, kn) ≥ ε(1 + |kn|)−n/2. (2.3)

Since |Cn| ≥ (1 + |kn|)n, we obtain

|û(π, kn)| ≥ ε(1 + |kn|)n/2, n ∈ N,

which is a contradiction, since û(π, kn) decays rapidly.

Sufficiency:
By assuming (2.1) we must prove that for each f ∈ (ker tL)◦ ⊂ C∞(T 2), there exists u ∈ C∞(T 2) such 

that Lu = f .
Partial Fourier series in the variable t leads us to the equations

∂xû(x, k) + 1 (ik + p(x))û(x, kn) = f̂(x, k)/λ, x ∈ T 1, k ∈ Z.

λ
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We obtain solutions to these equations defining

û(x, k) =
x∫

0

exp

⎧⎨⎩−
x∫

y


ρ(s) + i(k + �ρ(s))
λ

ds

⎫⎬⎭λ−1f̂(y, k)dy, (2.4)

if k is such that ck ∈ iZ, and, in the other case, we define

û(x, k) = Ck

2π∫
0

exp

⎧⎨⎩−
x∫

x−y


ρ(s) + i(k + �ρ(s))
λ

ds

⎫⎬⎭λ−1f̂(x− y, k)dy, (2.5)

in which Ck = (1 − exp{−2πck})−1.
Solutions given by (2.4) are 2π-periodic, since f ∈ (ker tL)◦ and the distributions

exp

⎧⎨⎩
x∫

0


ρ(s) + i(k + �ρ(s))
λ

ds

⎫⎬⎭ exp{−ikt}

belong to ker tL, whenever ck ∈ iZ. In addition, the rapid decaying of f̂(·, k) implies the rapid decaying of 
the sequence of solutions given by (2.4).

Finally, condition (2.1) implies that there exist positive constants C and γ such that |1 − exp{−2πck}| ≥
C(1 + |k|)−γ , for all k ∈ Z such that ck /∈ iZ; hence the rapid decaying of f̂(·, k) yield the rapid decaying 
of the sequence given by (2.5). �
Proposition 2.5. The operator L = ∂t + λ∂x + ρ(x), where λ ∈ R \ {0} and ρ ∈ C∞(T 1), is globally solvable 
on D′(T 2) if and only if condition (2.1) holds.

Proof. Notice that the operator P : C∞(T 2) → C∞(T 2), given by P = ∂t + λ∂x − ρ(x), satisfies tP = −L. 
Since the global solvability of P on C∞(T 2) implies the global solvability of L on D′(T 2), the sufficiency of 
condition (2.1) follows from Proposition 2.4.

On the other hand, if condition (2.1) fails to hold, then we define f ∈ C∞(T 2) by proceeding as in the 
proof of necessity in Proposition 2.4. We claim that this function f belongs to ◦(kerP ) \ LD′(T 2), which 
means that L is not globally solvable on D′(T 2). Notice that, if u ∈ C∞(T 2) and Pu = 0, then û(·, −kn)
vanishes identically, since ckn

/∈ iZ. Hence f ∈ ◦(kerP ). Finally, if μ ∈ D′(T 2) and Lμ = f , then μ̂(·, kn)
belongs to C∞(T 1) and it is given by (2.2). Hence estimate (2.3) holds true. By taking ψ ∈ C∞(T 1, R) such 
that ψ ≥ 0, suppψ ⊂ [π, 2π], and 

∫ 2π
π

ψ = 1, it follows that∣∣∣∣∣∣
〈
μ̂(x, kn), C−1

n exp

⎧⎨⎩
x∫

π


ρ(s) + i(kn + �ρ(s))
λ

(s)ds

⎫⎬⎭ψ(x)
〉∣∣∣∣∣∣ ≥ ε(1 + |kn|)−n/2, for all n ∈ N. (2.6)

Since μ̂(·, kn) increases slowly, we obtain constants K > 0 and M ∈ Z+, which do not depend on n, such 
that∣∣∣∣∣∣
〈
μ̂(x, kn), C−1

n exp

⎧⎨⎩
x∫

π


ρ(s) + i(kn + �ρ(s))
λ

(s)ds

⎫⎬⎭ψ(x)
〉∣∣∣∣∣∣ ≤ |Cn|−1K(1+ |kn|)M , for all n ∈ N. (2.7)

The estimates (2.6) and (2.7) imply that

K ≥ ε|Cn|(1 + |kn|)−(n/2)−M ≥ ε(1 + |kn|)(n/2)−M ,
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for all n ∈ N, which is a contradiction. �
Remark 2.6. When λ = 0, we have operators of the type ∂t + ρ(x). The global solvability of these operators 
is characterized in Section 4. See Theorem 4.2 and Theorem 4.3.

3. Coefficient a with only zeros of finite order

Throughout this section, we assume that a−1(0) �= ∅ and that a vanishes only of finite order. Thus, we 
may write a−1(0) = {x1 < · · · < xN}, and xN+1 = x1 + 2π. In this case, we denote by nj the order of 
vanishing of a at xj , j = 1, . . . , N .

According to [6], under these assumptions the operator L0 is globally solvable on both C∞(T 2) and 
D′(T 2). Moreover, L0 is surjective on D′(T 2). Hence L0C∞(T 2) = (ker tL0)◦ and L0D′(T 2) = D′(T 2).

By using partial Fourier series in the variable t, we may describe the functions p = p(x) which belongs 
to L0C∞(T 2). Note that, if a distribution μ =

∑
k∈Z μ̂(x, k) exp{ikt} belongs to ker tL0, then the division 

theorem implies that

μ̂(x, 0) = C0

a
+

N∑
j=1

nj−1∑
�=0

Cj�δ
(�)(x− xj),

where C0 and Cj� are constants. Conversely, for any constants the distribution⎛⎝C0

a
+

N∑
j=1

nj−1∑
�=0

Cj�δ
(�)(x− xj)

⎞⎠⊗ 1t

belongs to ker tL0. Therefore, p = p(x) belongs to L0C∞(T 2) = (ker tL0)◦ if and only if p vanishes at each 
xj , with order of vanishing greater than nj − 1, for each j = 1, . . . , N , and moreover, 

∫ 2π
0 (p/a)(x)dx = 0.

If L0 is globally solvable on C∞(T 2) (respectively D′(T 2)) and p ∈ L0C∞(T 2), then simple computations 
show that Lp is still globally solvable on C∞(T 2) (respectively D′(T 2)).

Also, according to [6], La′ is globally solvable on C∞(T 2). Note that a′ /∈ L0C∞(T 2).
Our main result in this section will imply that, for any p ∈ C∞(T 1

x), the operator Lp is globally solvable 
on both C∞(T 2) and D′(T 2).

We first present a result concerning solvability modulo functions which are flat at a−1(0) × T 1.

Proposition 3.1. Let Lp be given by (1.3). Suppose that a vanishes only of finite order and a−1(0) �= ∅. Given 
f ∈ (ker tLp)◦, there exists u ∈ C∞(T 2) such that Lpu − f is flat at a−1(0) × T 1.

Proof. By using cutoff functions we see that it is enough to work on a small neighborhood (x0−ε, x0+ε) ×T 1, 
with x0 ∈ a−1(0).

Given f, u ∈ C∞((x0 − ε, x0 + ε) × T 1), we use formal Taylor series to write

u(x, t) �
∞∑
j=0

uj(t)(x− x0)j , uj(t) = 1
j!∂

j
xu(x0, t),

f(x, t) �
∞∑
j=0

fj(t)(x− x0)j , fj(t) = 1
j!∂

j
xf(x0, t),

a(x) �
∞∑

aj(x− x0)j , aj = 1
j!a

(j)(x0),

j=0
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and

p(x) �
∞∑
j=0

pj(x− x0)j , pj = 1
j!p

(j)(x0).

The formal Taylor series of Lpu − f is

Lpu− f �
∞∑
j=0

(
u′
j +

j∑
k=0

[(j + 1 − k)akuj+1−k + pkuj−k] − fj

)
(x− x0)j .

It follows that Lpu − f is flat at {x0} × T 1 if and only if

u′
j +

j∑
k=0

[(j + 1 − k)akuj+1−k + pkuj−k] = fj , j = 0, 1, 2, . . . . (3.1)

After finding the sequence of solutions (uj)j∈Z+ , the required function u is obtained by using Borel’s 
Lemma. Hence the proof reduces to solve the equations (3.1). In order to solve them (we want solutions in 
C∞(T 1

t )), we denote by n (1 ≤ n < ∞) the order of vanishing of a at x0 and we split the proof into three 
cases:

Case 1: Assume that n = 1. Then the equations (3.1) reduce to

u′
0 + p0u0 = f0, (3.2)

u′
1 + (a1 + p0)u1 = f1 − p1u0, (3.3)

u′
j + (ja1 + p0)uj = fj −

j∑
k=1

pkuj−k −
j∑

k=2

(j + 1 − k)akuj+1−k, (3.4)

for all j > 1.
All these equations may be solved, with unique solutions, if p0 /∈ (−a1)Z+ + iZ.
If p0 = −im, m ∈ Z, then δ(x − x0) ⊗ exp{−imt} belongs to ker tLp. Since f ∈ (ker tLp)◦, it follows 

that f̂0(m) = (2π)−1〈δ(x − x0) ⊗ exp{−imt}, f〉 = 0. Hence equation (3.2) has a solution. All the other 
equations, given by (3.3) and (3.4), have unique solutions, since a1 �= 0.

If p0 = −a1 − im, (m ∈ Z), then equation (3.2) has a unique solution u0 and the next equation is 
u′

1 − imu1 = f1 − p1u0, which has solution if and only if 0 = f̂1(m) − p1û0(m) = f̂1(m) + p1f̂0(m)/a1. Since 
[−a1δ

′(x − x0) + p1δ(x − x0)] ⊗ exp{−imt} ∈ ker tLp, it follows that a1f̂1(m) + p1f̂0(m) = 0 and then we 
can find a solution u1 to (3.3). The other equations, given by (3.4), have unique solutions uj , j ≥ 2.

In the case p0 = −2a1 − im, (m ∈ Z), the first two equations have unique solutions u0 and u1, which 
satisfy

û0(m) = −f̂0(m)/2a1 and û1(m) = − 1
a1

(
f̂1(m) + p1f̂0(m)

2a1

)
.

The next equation is

u′
2 + (p0 + 2a1)u2 = f2 − (p1 + a2)u1 − p2u0,

which has solutions if and only if
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0 = f̂2(m) + (p1 + a2)
a1

f̂1(m) +
(

(p1 + a2)p1

2a2
1

+ p2

2a1

)
f̂0(m). (3.5)

Setting

ν(x) = 1
2δ

′′(x− x0) −
(p1 + a2)

a1
δ′(x− x0) +

(
(p1 + a2)p1

2a2
1

+ p2

2a1

)
δ(x− x0),

direct computations show that ν(x) ⊗ exp{−imt} ∈ ker tLp. Since f ∈ (ker tLp)◦, we obtain 0 = 〈ν(x) ⊗
exp{−imt}, f〉. This last identity is equivalent to (3.5). Hence we can find a solution u2.

Again, all the next equations, given by (3.4), have unique solutions uj , j ≥ 3.
More general, assume that p0 = −j0a1 − im (j0 ∈ N, j0 ≥ 2, and m ∈ Z). For k = 1, . . . , j0, we set

Ck =
k∑

�=1

∑
α�∈N�

|α�|=k

∏�
o=1(pαo�

+ (j0 − α1� − · · · − αo�)aαo�+1)
a�1α1�(α1� + α2�) · · · (α1� + · · · + α��)

,

where α� = (α1�, . . . , α��) is a multi-index in N� and |α�| = α1� + · · · + α��. Note that the equation

u′
j0 + (j0a1 + p0)uj0 = fj0 −

j0∑
k=1

pkuj0−k −
j0∑

k=2

(j0 + 1 − k)akuj0+1−k

has a solution uj0 if and only if

0 = f̂j0(m) −
j0∑

k=1

pkûj0−k(m) −
j0∑

k=2

(j0 + 1 − k)ak ̂uj0+1−k(m), (3.6)

while all the other equations, given by (3.2)–(3.4) (with j �= j0), have unique solutions. By using the previous 
equations (indices j = 0, 1, . . . , j0 − 1) we see that condition (3.6) is equivalent to

0 =
j0∑

k=0

Ckf̂j0−k(m), (3.7)

in which C0
.= 1.

Define

μ
.=
(

j0∑
k=0

C̃kδ
(j0−k)(x− x0)

)
⊗ exp{−imt},

with C̃k = (−1)j0−k Ck

(j0−k)! , k = 0, 1, . . . , j0.
If μ belongs to ker tLp, then 0 = 〈μ, f〉, since f ∈ (ker tLp)◦. On the other hand, by the above expression 

which defines μ, we see that the condition 0 = 〈μ, f〉 is equivalent to (3.7). Hence the proof reduces to show 
that μ ∈ ker tLp.

By using induction we may verify the identity

ka1Ck =
k−1∑

(pk−� + (j0 − k)ak−�+1)C�, 1 ≤ k ≤ j0. (3.8)

�=0



10 P.L. Dattori da Silva et al. / J. Math. Anal. Appl. 492 (2020) 124467
The distribution μ belongs to ker tLp if and only if

d

dx

(
a(x)

j0∑
k=0

C̃kδ
(j0−k)(x− x0)

)
− (im + p)

j0∑
k=0

C̃kδ
(j0−k)(x− x0) = 0.

Above identity is equivalent to

0 =
j0∑
�=1

(
j0−�∑
k=0

(−1)j0−k+�−1C̃k

(
j0 − k

�− 1

)
a(j0−k−�+1)(x0)

)
δ(�)(x− x0)

+
j0∑
�=0

(
j0−�∑
k=0

(−1)j0−k+�−1C̃k

(
j0 − k

�

)
(im + p)(j0−k−�)(x0)

)
δ(�)(x− x0).

Since the derivatives of δ(x − x0) are linearly independent, it follows that the above identity becomes 
equivalent to (3.8).

Therefore, μ ∈ ker tLp.

Case 2: Assume that 1 < n < ∞ and pj = 0, for all j ≥ 1. Then the equations (3.1) become

u′
j + p0uj = fj , j = 1, . . . , n− 1, (3.9)

u′
j + p0uj = fj −

j∑
k=n

(j + 1 − k)akuj+1−k, j ≥ n. (3.10)

If p0 /∈ iZ, then each equation in either (3.9) or (3.10) has a unique solution. We then solve recursively 
these equations.

If p0 = −im, m ∈ Z, then δ(j)(x − x0) ⊗ exp{−imt} ∈ ker tLp, j = 0, . . . , n − 1, and we may choose 
a solution uj , which is not unique, to u′

j + p0uj = fj . After this, we proceed to solve equations (3.10). In 
order to find a solution un to

u′
n + p0un = fn − anu1,

we must adjust the solution u1 so that

û1(m) = f̂j(m)
an

.

Similarly, to find a solution uj (j > n) to (3.10), we must adjust uj+1−n setting

ûj+1−n(m) = 1
(j + 1 − n)an

(
f̂j(m) −

j∑
k=n+1

(j + 1 − k)akûj+1−k(m)
)
.

Case 3: Suppose now that 1 < n < ∞ and there exists j ≥ 1 such that pj �= 0. Set j0 = 1 if p1 �= 0. In the 
other case, let j0 be the smallest of the indices 1 < j < ∞ such that pj �= 0 and p� = 0, � = 1, . . . , j − 1.

When j0 ≥ n, the equations (3.1) become

u′
j + p0uj =fj , j = 0, . . . , n− 1, (3.11)

u′
j + p0uj =fj −

j∑
(j + 1 − k)akuj+1−k, n ≤ j < j0, (3.12)
k=n
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u′
j + p0uj =fj −

j∑
k=j0

pkuj−k −
j∑

k=n

(j + 1 − k)akuj+1−k, j ≥ j0. (3.13)

Notice that equations (3.12) do not appear when j0 = n.
Applying arguments similar to those used above, we see that we may solve recursively equations (3.11), 

(3.12) and (3.13).
When 1 ≤ j0 < n, the equations (3.1) reduce to

u′
j + p0uj =fj , j = 0, . . . , j0 − 1, (3.14)

u′
j + p0uj =fj −

j∑
k=j0

pkuj−k, j0 ≤ j < n, (3.15)

u′
j + p0uj =fj −

j∑
k=j0

pkuj−k −
j∑

k=n

(j + 1 − k)akuj+1−k, j ≥ n. (3.16)

Again, if either j0 < n − 1 or p0 /∈ iZ, then we may solve recursively these equations without further 
difficulties.

When j0 = n − 1 and p0 = −im, m ∈ Z, then we do not find further difficulties to solve the equations 
provided that pj0 /∈ −anN.

The last case to be checked is j0 = n −1, p0 = −im, m ∈ Z, and pj0 = −�an, � ∈ N. For instance, if � = 1, 
then we may solve the first j0 equations in (3.14), since δ(j)(x − x0) ⊗ exp{−imt} belongs to ker tLp, for 
j = 0, . . . , j0 − 1. Since j0 = n − 1, the next equation is u′

n−1 + p0un−1 = fn−1 − pj0u0 (see (3.15)). In order 
to solve this equation, we must choose the solution u0 such that û0(m) = f̂n−1(m)/pj0 . The next equation 
is u′

n +p0un = fn−pnu0 (see (3.16)). This equation has a solution if and only if pj0 f̂n(m) −pnf̂n−1(m) = 0. 
This last identity follows from the fact that the distribution(

pj0
n! δ

(n)(x− x0) + pn
(n− 1)!δ

(n−1)(x− x0)
)
⊗ exp{−imt}

belongs to ker tLp. Hence we have solutions to the equation u′
n + p0un = fn − pnu0. The other equations 

to be solved are given by (3.16), with j ≥ n + 1. Each of these equations has a solution. Indeed, since 
pj0 + (j + 1 − n)an �= 0, for all j ≥ n + 1, we may choose the previous solution uj−j0 so that

f̂j(m) −
j∑

k=j0

pkûj−k(m) −
j∑

k=n

(j + 1 − k)akûj+1−k(m) = 0.

Notice that, to find solutions un+1, un+2, . . ., we must adjust u2, u3, . . ..
Suppose now that j0 = n − 1, p0 = −im, m ∈ Z, and pj0 = −�an, � ∈ N, � ≥ 2. Again, we solve 

the first j0 equations in (3.14), since δ(j)(x − x0) ⊗ exp{−imt} belongs to ker tLp, for j = 0, . . . , j0 − 1. 
The next equation is u′

n−1 + p0un−1 = fn−1 − pj0u0, which we may solve by choosing the solution u0 such 

that û0(m) = f̂n−1(m)/pj0 . Similarly, we may recursively find solutions un, . . . , un+�−2, to the respective 
equation in (3.16), provided that we adjust the previous solutions u1, . . . , u�−1 by choosing them so that

ûk(m) = 1
pj0 + kan

⎛⎝f̂j0+k(m) −
k∑

j=1
[pj0+j + (k − j)aj0+j+1]ûk−j(m)

⎞⎠ ,

k = 1, . . . , � − 1. The next equation is
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u′
n+�−1 + p0un+�−1 = fn+�−1 − (pj0+1 + (�− 1)aj0+2)u�−1 − · · · − (pj0+�−1 + aj0+�)u1 − pj0+�u0.

This equation has solutions if and only if

0 = f̂j0+�(m) −
�−1∑
k=0

(pj0+�−k + kaj0+�−k+1)ûk(m). (3.17)

If there exists a solution un+�−1, then all the other equations given by (3.16) (with j ≥ n + �) may be solved 
recursively by adjusting previous solutions, with a procedure analogous to the one which gives the solutions 
un, . . . , un+�−2.

Hence the proof reduces to verify (3.17).
Define F0 = 1 and for k = 1, . . . , �, define

Fk =
k∑

j=1
(−1)j

∑
αj∈Nj

|αj |=k

∏j
o=1(pj0+αoj

+ (�− α1j − · · · − αoj)aj0+αoj+1)∏j
o=1(pj0 + (�− α1j − · · · − αoj)an)

,

in which αj = (α1j , . . . , αjj) ∈ Nj and |αj | = α1j + · · · + αjj .
An induction process shows that

−(pj0 + (�− k)an)Fk =
k−1∑
j=0

(pj0+k−j + (�− k)aj0+k−j+1)Fj , (3.18)

for k = 1, . . . , �.
With notation above, (3.17) is equivalent to

0 =
�∑

k=0

Fk
̂fj0+�−k(m).

Since f ∈ (ker tLp)◦, the proof will be completed by showing that the distribution

(
�∑

k=0

F̃kδ
(j0+�−k)(x− x0)

)
⊗ exp{−imt}

belongs to ker tLp, in which F̃k = (−1)j0+�−k Fk

(j0+�−k)! , k = 0, . . . , �.
By the expression of tLp, it follows that this distribution belongs to ker tLp if and only if

d

dx

(
a

�∑
k=0

F̃kδ
(j0+�−k)(x− x0)

)
− (im + p)

�∑
k=0

F̃kδ
(j0+�−k)(x− x0) = 0. (3.19)

By using the linear dependence of the derivatives of δ(x −x0), we may see that identity (3.19) is equivalent 
to the following identities

0 =
�∑

F̃k

(
j0 + �

0

)
(−1)j0+�−k(im + p)(j0+�−k)(x0),
k=0
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0 =
�−ω∑
k=0

F̃k(−1)j0+�−k+ω−1
(
j0 + �− k

ω − 1

)
a(j0+�−k−ω+1)(x0)

+
�−ω∑
k=0

F̃k(−1)j0+�−k+ω−1
(
j0 + �− k

ω

)
(im + p)(j0+�−k−ω)(x0),

ω = 1, . . . , �.
Finally, we use (3.18) in order to verify the validity of the above identities.
This completes the proof. �

Remark 3.2. Given f ∈ (ker tLp)◦, by Proposition 3.1 it follows that there exists u ∈ C∞(T 2) such that 
Lpu − f is flat at a−1(0) × T 1. Notice that Lpu − f ∈ (ker tLp)◦. Hence, if there exists v ∈ C∞(T 2) such 
that Lpv = Lpu − f , then Lp(u − v) = f . In other words, Proposition 3.1 allows us to assume that the 
right-hand side of the equation Lpu = f is flat at a−1(0) × T 1.

Before solving the equation Lpu = f for f flat, we need a technical result, which will be used to produce 
certain distributions in the kernel of the transpose operator.

Lemma 3.3. Let a ∈ C∞(T 1, R) and assume that a vanishes of finite order n ≥ 1 at x1. Let k ∈ Z, m0 ∈ Z+
and p ∈ C∞(T 1). Denote by q the order of vanishing of p + ik at x1 (q = 0 if p(x1) + ik �= 0). Suppose that 
0 ≤ q ≤ n − 1 and whenever q = n − 1 we have (�p + k)(q)(x1) �= 0 or 
p(q)(x1) + (�/(q + 1))a(n)(x1) �= 0, 
for all � = 0, . . . , m0.

Under the above assumptions, given

ν =
m0∑
�=0

c�δ
(�)(x− x1), c� ∈ C,

there exists

μ =
m0+q∑
�=q

d�δ
(�)(x− x1), d� ∈ C,

such that −∂x(aμ) + (p + ik)μ = ν.

Proof. Given

μ =
m0+q∑
�=q

d�δ
(�)(x− x1),

we may write

−∂x(aμ) + (p + ik)μ =
m0∑
�=0

D�δ
(�)(x− x1),

in which the constants D� are given as follows: denoting Cj,� = (−1)j
(
�
j

)
, we have

D0 =
m0+q∑

Cj,jdj(p + ik)(j)(x1),

j=q
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and (when m0 > 0)

D� =
m0+q∑
j=�+q

dj [Cj−�,j(p + ik)(j−�)(x1) − Cj−�+1,ja
(j−�+1)(x1)],

for � = 1, . . . , m0.
In order to have −∂x(aμ) + (p + ik)μ = ν, we must choose d� so that D� = c�, for � = 0, . . . , m0.
If m0 = 0, then it is enough to choose

dq = c0
(−1)q(p + ik)(q)(x1)

.

If m0 = 1, then it is enough to choose

dq+1 = c1
Cq,q+1(p + ik)q(x1) − Cq+1,q+1a(q+1)(x1)

and

dq = c0 − Cq+1,q+1dq+1(p + ik)(q+1)(x1)
Cq,q(p + ik)(q)(x1)

.

Finally, if m0 ≥ 2, then we recursively choose

dm0+q = cm0

Cq,m0+q(p + ik)(q)(x1) − Cq+1,m0+qa(q+1)(x1)
,

d�+q = c�
Cq,�+q(p + ik)(q)(x1) − Cq+1,�+qa(q+1)(x1)

+

m0+q∑
j=�+q+1

dj [Cj−�+1,ja
(j−�+1)(x1) − Cj−�,j(p + ik)(j−�)(x1)]

Cq,�+q(p + ik)(q)(x1) − Cq+1,�+qa(q+1)(x1)
,

for � = m0 − 1, m0 − 2, . . . , 1, and

dq =
c0 −

∑m0+q
j=q+1 Cj,jdj(p + ik)(j)(x1)
(−1)q(p + ik)(q)(x1)

. �
We are now in position to state and prove our main result.

Theorem 3.4. If a−1(0) �= ∅ and a vanishes only of finite order, then the operator Lp given by (1.3) is globally 
solvable on C∞(T 2).

Proof. Write a−1(0) = {x1 < · · · < xN}, xN+1 = x1 + 2π, and denote by nj the order of vanishing of a at 
xj , j = 1, . . . , N .

Given f ∈ (ker tLp)◦, we must show that there exists u such that Lpu = f . By Proposition 3.1, we may 
assume that f is flat at a−1(0) × T 1 (see Remark 3.2).

By using partial Fourier series in the variable t, we are led to the equations

a(x)∂xû(x, k) + (ik + p(x))û(x, k) = f̂(x, k), x ∈ T 1, k ∈ Z. (3.20)

We will first solve these equations and after we will show that the sequence of solutions decays rapidly.
Suppose that ik + p vanishes at a−1(0) as much as a.
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If the mean ((ik+ p)/a)0 = (2π)−1 ∫ 2π
0 ((ik + p)/a)(x)dx belongs to iZ, then a solution to (3.20) is given 

by

û(x, k) = exp

⎧⎨⎩−
x∫

0

ik + p

a
(s)ds

⎫⎬⎭
x∫

0

f̂(y, k)
a(y) exp

⎧⎨⎩
y∫

0

ik + p

a
(s)ds

⎫⎬⎭ dy.

In order to see that û(x, k) ∈ C∞(T 1), it is enough to show that

x∫
0

f̂(y, k)
a(y) exp

⎧⎨⎩
y∫

0

ik + p

a
(s)ds

⎫⎬⎭ dy = 0.

This last identity follows from the following two facts: f ∈ (ker tLp)◦ and⎡⎣exp

⎧⎨⎩
x∫

0

((ik + p)/a)(s)ds

⎫⎬⎭ /a(x)

⎤⎦⊗ exp{−ikt} ∈ ker tLp ⊂ D′(T 1).

If the mean ((ik + p)/a)0 does not belong to iZ, then the unique solution to (3.20) is given by

û(x, k) = C exp

⎧⎨⎩−
x∫

0

ik + p

a
(s)ds

⎫⎬⎭+
x∫

0

f̂(y, k)
a(y) exp

⎧⎨⎩−
x∫

y

ik + p

a
(s)ds

⎫⎬⎭ dy,

where

C = 1(
exp

{∫ 2π
0

ik+p
a (s)ds

}
− 1

) 2π∫
0

f̂(y, k)
a(y) exp

⎧⎨⎩
y∫

0

ik + p

a
(s)ds

⎫⎬⎭ dy.

Note that ik + p does not vanish, for |k| large enough. Hence, there is no need to discuss the rapid 
decaying of the solutions given above.

Suppose now that ik + p vanishes less than a at some point in a−1(0) = {x1 < . . . < xN}.
In this case, in order to solve the equations (3.20), it is enough to work on intervals of the form (xj, xj+σ), 

in which ik + p(x) vanishes less than a on both xj and xj+σ. In addition, either σ = 1 or σ > 1 and 
ik + p(x) vanishes as much as a at the intermediate zeros xj+1, . . . , xj+σ−1. Here σ ≤ N and we set 
xN+1 = x1 + 2π, xN+2 = x2 + 2π, . . . , xN+j = xj + 2π.

On an interval (xj , xj+σ) as described above, we have

∂xû(x, k) + ik + p(x)
a(x) û(x, k) = f̂(x, k)

a(x) , (3.21)

in which the right-hand side is smooth on [xj, xj+σ] and flat at the points xj , . . . , xj+σ. We will seek a 
solution û(x, k) to (3.21) which is smooth on (xj, xj+σ) and flat at {xj, xj+σ}, so that we may join this 
solution with solutions on other intervals with the same type, in order to obtain a solution to (3.20) on T 1.

In addition, if the sequence {û(x, k)}k∈Z decays rapidly on each [xj , xj+σ], then it decays rapidly on T 1

and

u(x, t) =
∑

û(x, k) exp{ikt}

k∈Z
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will be a solution to Lpu = f .
By the comments above, it is enough to work only on intervals of the type (xj , xj+σ).
We now split the construction of the solutions û(x, k) on (xj , xj+σ) into five cases:

Case 1: 
p vanishes as much as a at both xj and xj+σ, and, consequently, �p + k either does not vanish or 
it vanishes less than a at both xj and xj+σ.

In this case, for η ∈ (xj , xj+σ), the functions

Ek(x) = exp

⎧⎨⎩−
x∫

η


p(s) + i(k + �p(s))
a(s) ds

⎫⎬⎭
and

1/Ek(x) = exp

⎧⎨⎩
x∫

η


p(s) + i(k + �p(s))
a(s) ds

⎫⎬⎭
are bounded on (xj , xj+σ). Hence, the expression

û(x, k) = Ek(x)
x∫

xj

f̂(y, k)
a(y)Ek(y)

dy (3.22)

defines a smooth function on (xj , xj+σ) which is flat at xj and solve (3.21) on [xj , xj+σ).
The next step is to show that û(x, k) is also flat at xj+σ. This is obtained by showing that

0 =
xj+σ∫
xj

f̂(y, k)
a(y)Ek(y)

dy

=
xj+σ∫
xj

f̂(y, k)
a(y) exp

⎧⎨⎩
y∫

η

ik + p(s)
a(s) ds

⎫⎬⎭ dy.

As in [6], we will see that the above identity follows from the existence of certain distributions in ker tLp.
Notice that

ψk(x) =
{

1/Ek(x), x ∈ (xj , xj+σ)
0, x ∈ T 1 \ (xj , xj+σ)

belongs to D′(T 1), since 1/Ek(x) is bounded. By the division theorem, there exists ψk/a ∈ D′(T 1), whose 
order is at most m, the maximum of the order of vanishing of a on [xj , xj+σ]. Hence ωk = −∂x(ψk) + (p +
ik)(ψk/a) is a distribution of order at most m + 1. In addition, suppωk ⊂ {xj , xj+σ}. It follows that

ωk =
m+1∑
�=0

c1�δ
(�)(x− xj) +

m+1∑
�=0

c2�δ
(�)(x− xj+σ),

where c1� and c2� are constants. By Lemma 3.3, there is

νk =
m+1+qj∑

d1�δ
(�)(x− xj) +

m+1+qj+σ∑
d2�δ

(�)(x− xj+σ)

�=0 �=0
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(in which q� is the order of vanishing of �p + k at x�, � = j, j + σ), such that ωk = −∂x(aνk) + (p + ik)νk. 
Hence [(ψk/a) − νk] ⊗ exp{−ikt} belongs to ker tLp. Consequently,

0 = 〈(ψk/a) − νk, f̂(·, k)〉 =
xj+σ∫
xj

f̂(y, k)
a(y) exp

⎧⎨⎩
y∫

η

ik + p(s)
a(s) ds

⎫⎬⎭ dy,

since f ∈ (ker tLp)◦ and f is flat at {xj , xj+σ}.
Therefore, û(x, k), given by (3.22), is a solution to (3.21), which is smooth on [xj, xj+σ] and flat at the 

extremes.

Case 2: Suppose that the order of vanishing of a is greater than the order of vanishing of 
p plus one, at 
both xj and xj+σ. In particular, 
p does not vanish or it vanishes of finite order.

If (
p/a)(x) > 0 on small intervals (xj , xj + ε) and (xj+σ − ε, xj+σ), we set

û(x, k) =Ek(x)
x∫

xj

f̂(y, k)
a(y)Ek(y)

dy

=
x∫

xj

f̂(y, k)
a(y) exp

⎧⎨⎩−
x∫

y

p + ik

a
(s)

⎫⎬⎭ dy, x ∈ (xj , xj+σ).

Notice that û(·, k) is well defined on (xj , xj+σ), since (
p/a)(x) > 0 on (xj , xj + ε). In addition, û(·, k) ∈
C∞([xj , xj+σ)) and it is flat at xj . We now proceed to show that û(·, k) is also flat at xj+σ. It is enough to 
show that û(xj+σ + h, k) = O(|h|n), for all n ∈ Z+. For h < 0 sufficiently small, we have

û(xj+σ + h, k) =
xj+σ+2h∫

xj

f̂(y, k)
a(y) exp

⎧⎪⎨⎪⎩−
xj+σ+h∫

y

p + ik

a
(s)

⎫⎪⎬⎪⎭ dy

+
xj+σ+h∫

xj+σ+2h

f̂(y, k)
a(y) exp

⎧⎪⎨⎪⎩−
xj+σ+h∫

y

p + ik

a
(s)

⎫⎪⎬⎪⎭ dy

.=I1 + I2.

We have

|I1| ≤ Ch

∥∥∥∥fa
∥∥∥∥
∞

xj+σ+2h∫
xj

exp

⎧⎪⎨⎪⎩−
xj+σ+h∫

xj+σ+2h


p
a

(s)

⎫⎪⎬⎪⎭ dy,

in which

Ch = sup
xj≤y≤xj+σ+2h

⎛⎜⎝exp

⎧⎪⎨⎪⎩−
xj+σ+2h∫

y


p
a

(s)

⎫⎪⎬⎪⎭
⎞⎟⎠ ;

notice that Ch is a positive constant that does not depend on k.
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Since (
p/a)(x) > 0 on (xj+σ − ε, xj+σ), it follows that the constants Ch are bounded. In addition, on 
(xj+σ − ε, xj+σ) we may write (
p/a)(s) = (xj+σ − s)−ρβ(s), in which ρ ≥ 2 and 0 < r ≤ β(s) ≤ M . We 
then obtain∣∣∣∣∣∣∣
xj+σ+2h∫

xj

f̂(y, k)
a(y) exp

⎧⎪⎨⎪⎩−
xj+σ+h∫

y

p + ik

a
(s)

⎫⎪⎬⎪⎭ dy

∣∣∣∣∣∣∣ ≤ C

∥∥∥∥fa
∥∥∥∥
∞

|xj+σ − xj | exp
{

−r

ρ− 1

(
2ρ−1 − 1
2ρ|h|ρ−1

)}
= O(|h|n),

for all n ∈ Z+.
We can estimate |I2| similarly, since f is flat at xj+σ.
In the sequel we treat the other possibilities to the sign of 
p/a.
If (
p/a)(x) < 0 on small intervals (xj , xj + ε) and (xj+σ − ε, xj+σ), we pick η ∈ (xj , xj+σ) and we set

û(x, k) = −
xj+σ∫
x

f̂(y, k)
a(y) exp

⎧⎨⎩−
x∫

y

p + ik

a
(s)

⎫⎬⎭ dy, x ∈ (xj , xj+σ). (3.23)

As before, this solution û(·, k) is smooth on [xj , xj+σ] and it is flat at the extremes.
If (
p/a)(x) < 0 on a small interval (xj , xj + ε) and (
p/a)(x) > 0 on (xj+σ − ε, xj+σ), then we set

û(x, k) =
x∫

η

f̂(y, k)
a(y) exp

⎧⎨⎩−
x∫

y

p + ik

a
(s)

⎫⎬⎭ dy, x ∈ (xj , xj+σ).

Proceeding as in the first situation treated in this Case 2, we may verify that this solution û(·, k) is 
smooth on [xj , xj+σ] and it is flat at the extremes.

If (
p/a)(x) > 0 on a small interval (xj , xj + ε) and (
p/a)(x) < 0 on (xj+σ − ε, xj+σ), then we set

û(x, k) =Ek(x)
x∫

xj

f̂(y, k)
a(y)Ek(y)

dy

=
x∫

xj

f̂(y, k)
a(y) exp

⎧⎨⎩−
x∫

y

p + ik

a
(s)

⎫⎬⎭ dy, x ∈ (xj , xj+σ).

As before, the second identity above may be used in order to show that this solution û(·, k) is smooth on 
[xj , xj+σ) and it is flat at xj . Moreover, proceeding as in the Case 1, via Lemma 3.3 we see that this solution 
is also flat at xj+σ.

Case 3: The order of vanishing of 
p is equal to the order of vanishing of a′, at both xj and xj+σ.
In this case, we pick φ(x) = [1 − cos(x − xj)]M [1 − cos(x − xj+σ)]M , M ∈ N, which vanishes only at 

{xj , xj+σ}, with finite order of vanishing. Picking M large enough, it follows that φ(x)/Ek(x) is bounded 
on (xj , xj+σ). Hence,

ψk(x) =
{
φ(x)/Ek(x), x ∈ (xj , xj+σ)
0, x ∈ T 1 \ (xj , xj+σ)

belongs to D′(T 1). By the division theorem, there exists ψk/(aφ) ∈ D′(T 1), whose order is at most 2M +m, 
in which m is the maximum of the order of vanishing of a on [xj , xj+σ]. Hence
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ωk = −∂x(aψk/(aφ)) + (p + ik)(ψk/(aφ))

is a distribution of order at most 2M + m + 1, which is equal to

−∂x(1/Ek) + (p + ik)(1/(Eka)) = 0 on (xj , xj+σ).

Proceeding as in the Case 1, we want to apply Lemma 3.3 in order to yield the existence of νk ∈ D′(T 1), 
which is a linear combination of derivatives of δ(x −xj) and δ(x −xj+σ), such that ωk = −∂x(aνk) +(p +ik)νk. 
This is possible assuming that two additional properties occur:

• if �p +k vanishes at xj of order at least nj , then 
p(nj−1)(xj) +(�/nj)a(nj)(xj) �= 0, for � = 1, ..., 2M +
m + 1.

• if �p + k vanishes at xj+σ of order at least nj+σ, then 
p(nj+σ−1)(xj+σ) + (�/nj+σ)a(nj+σ)(xj+σ) �= 0, 
for � = 1, ..., 2M + m + 1.

Before proceeding, we mention that the situation in which the extremes do not satisfy the above properties 
will be treated in Case 5.

Under the assumptions made in this Case 3, we have

0 =〈(ψk/(aφ)) − νk, f̂(·, k)〉 (3.24)

=〈ψk, [f̂(·, k)/(aφ)]〉

=
xj+σ∫
xj

f̂(y, k)
a(y) exp

⎧⎨⎩
y∫

η

ik + p(s)
a(s) ds

⎫⎬⎭ dy.

Therefore, the expression

û(x, k) = Ek(x)
x∫

xj

f̂(y, k)
a(y)Ek(y)

dy, x ∈ (xj , xj+σ)

defines a solution to (3.21), which is flat at {xj , xj+σ}. Indeed, since φ(x)/Ek(x) is bounded on (xj , xj+σ)
and f̂(x, k) is flat at xj , it follows that

lim
x→x+

j

f̂(x, k)
a(x)Ek(x) = lim

x→x+
j

f̂(x, k)
a(x)φ(x)

φ(x)
Ek(x) = 0.

A similar procedure shows that all the right-hand side derivatives of the function f̂(x, k)/[a(x)Ek(x)] are 
zero at xj . Hence,

x �→
x∫

xj

f̂(y, k)
a(y)Ek(y)

dy

is well defined, smooth on [xj, xj+σ) and flat at xj . Similarly, it follows that û(x, k) is well defined, smooth 
on [xj , xj+σ) and flat at xj . Finally, by using that f̂(x, k) is flat at xj+σ and using (3.24) we see that û(x, k)
is also flat at xj+σ.

Case 4: Suppose xj as in Case 1 (or 3) and xj+σ as in Case 2. We then define û(x, k) on (xj , xj+σ) by using 
formula (3.22). If (
p/a) > 0 on a small interval (xj+σ − ε, xj+σ), then we proceed as in Case 1 (or as in 
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the end of Case 3), to see that this solution is flat at xj , and we proceed as in the first part of the Case 
2 in order to show that this solution is flat at xj+σ. On the other hand, if (
p/a) < 0 on a small interval 
(xj+σ − ε, xj+σ), then we argue as in Case 1 (or 3), via Lemma 3.3, in order to verify that we may rewrite 
û(x, k) as in (3.23), from which follows that this solution is flat at {xj , xj+σ}.

A similar procedure constructs a solution û(x, k) when xj is as in Case 2 and xj+σ is as in Case 1 (or 3). 
Indeed, it is enough to consider û(x, k) given by (3.23).

When xj is as in Case 1 and xj+σ is as in Case 3 or xj is as in Case 3 and xj+σ is as in Case 1, then we 
proceed as in Case 3 in order to present a smooth solution û(x, k) on (xj , xj+σ) which is flat at {xj , xj+σ}.

Case 5: The order of vanishing of 
p is equal to the order of vanishing of a′ at some xj , to say xj1 . 
Moreover, �p + k vanishes at xj1 of order at least nj1 , and there exists �1 ∈ N such that 
p(nj1−1)(xj1) +
(�1/nj1)a(nj1 )(xj1) = 0. In this case, we look to a previous interval of the type (xj0 , xj0+σ0), such that 
xj0 < xj1 and xj0+σ0 = xj1 . The choice of a solution to (3.20) on (xj1 , xj1+σ1) must be adjusted depending 
on the fixed solution to (3.20) on (xj0 , xj0+σ0). This approach leads us to the following two situations:

(i) solving (3.20) on a chain of intervals

(xj0 , xj0+σ0 ] ∪ [xj1 , xj1+σ1) ∪ · · · ∪ [xjn , xjn+σn
),

in which 1 ≤ n ≤ N , and xjm+σm
= xjm+1 , for m = 0, . . . , n; in addition, the extremes xj0 and 

xjn+σn
satisfy the assumptions in Lemma 3.3, that is, they are of the types treated in Cases 1–4. For 

m = 1, . . . , n, the order of vanishing of 
p is equal to the order of vanishing of a′ at xjm . Moreover, 
�p + k vanishes at xjm of order at least njm , and there exists �m ∈ N such that 
p(njm−1)(xjm) +
(�m/njm)a(njm )(xjm) = 0.

(ii) solving (3.20) on a chain of intervals

(xj0 , xj0+σ0 ] ∪ [xj1 , xj1+σ1) ∪ · · · ∪ [xjn , xjn+σn
),

as in the previous item. However, now xj0 + 2π = xjn+σn
and for all m = 0, . . . , n, n + 1, the order of 

vanishing of 
p is equal to the order of vanishing of a′ at xjm . Moreover, �p + k vanishes at xjm of 
order at least njm , and there exists �m ∈ N such that 
p(njm−1)(xjm) + (�m/njm)a(njm )(xjm) = 0.

For each m = 0, . . . , n, we fix ηm ∈ (xjm , xjm+σm
), and we set

Em,k(x) = exp

⎧⎨⎩−
x∫

ηm

p + ik

a
(s)ds

⎫⎬⎭ x ∈ (xjm , xjm+σm
).

We now split the construction of a solution to (3.20) on (xj0 , xjn+σn
) into five subcases, which take 

into account different situations concerning the extremes xj0 and xjn+σn
. The Subcases 5.1–5.4 treat the 

situation (i), while Subcase 5.5 treats the situation (ii).

Subcase 5.1: The extremes xj0 and xjn+σn
satisfy the assumptions in Case 1, i.e., 
p vanishes as much as 

a and �p + k vanishes less than a.
We consider

û(x, k) = Em,k(x)

⎛⎜⎝Cm +
x∫

x

f̂(y, k)
a(y)Em,k(y)

dy

⎞⎟⎠ , (3.25)

jm
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for x ∈ (xjm , xjm+σm
), and m = 0, . . . , n.

We set C0 = 0 and the other constants C1, . . . , Cn must be adjusted in order to obtain a smooth solution 
û(·, k) to (3.20) on (xj0 , xjn + σn). This is obtained (see the Appendix A) by setting

C1 =
∂�1
−E0,k(xj1)

∂�1
+ E1,k(xj1)

xj1∫
xj0

f̂(y, k)
a(y)E0,k(y)

dy,

C2 =
∂�2
−E1,k(xj2)

∂�2
+ E2,k(xj2)

⎛⎜⎝C1 +
xj2∫

xj1

f̂(y, k)
a(y)E1,k(y)

dy

⎞⎟⎠ ,

and, recursively, for all m = 2, . . . , n,

Cm =
∂�m
− Em−1,k(xjm)
∂�m
+ Em,k(xjm)

⎛⎜⎝Cm−1 +
xjm∫

xjm−1

f̂(y, k)
a(y)Em−1,k(y)

dy

⎞⎟⎠ . (3.26)

Since C0 = 0, û(x, k) is flat at xj0 (as in Case 1). We then proceed to verify that this solution is also flat 
at xjn+σn

.
It is enough to show that

Cn +
xjn+σn∫
xjn

f̂(y, k)
a(y)En,k(y)

dy = 0. (3.27)

Setting

Dm =
∂�1
−E0,k(xj1) · · · ∂�m

− Em−1,k(xjm)
∂�1
+ E1,k(xj1) · · · ∂�m

+ Em,k(xjm)
, m = 1, . . . , n,

and denoting the characteristic function of the interval (xjm, xjm+1) by χm, m = 0, . . . , n, it follows that 
the function

Gk(x) = χ0(x)E0,k(x) +
n∑

m=1
Dmχm(x)Em,k(x) (3.28)

is smooth on (xj0 , xjn+σn
) (we may verify this by using identity (A.1) in the Appendix A) and vanishes 

only at the points xjm , where the order of vanishing is �m, m = 1, . . . , n. In addition, a(x)G′
k(x) = −[p(x) +

ik]Gk(x), for all x ∈ (xj0 , xjn+σn
).

Consider μk a distribution in D′(T 1) which is given as follows: on (xj0 , xj1), μk = 1/Ek,0; on (xjn , xjn +
σn), μk = 1/(DnEn,k); on (xj0 , xjn+σn

), μk = 1/Gk; finally μk = 0 on T 1 \ [xj0 , xjn+σn
].

The distribution μk/a belongs to D′(T 1); it is supported on [xj0 , xjn+σn
] and satisfies

0 = ∂x(aGk(μk/a)) = Gk[∂x(a(μk/a)) − (p + ik)(μk/a)]

on (xj0 , xjn+σn
). Hence

ωk
.= −∂x(a(μk/a)) + (p + ik)(μk/a)
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is a linear combination of derivatives of the distributions δ(x −xjm), m = 0, . . . , n + 1, and the order of the 
derivatives at xjm is lesser than �m, for all m = 1, . . . , n. We then apply Lemma 3.3 in order to obtain a 
linear combination of derivatives of delta, νk, such that

−∂x(a(μk/a− νk)) + (p + ik)(μk/a− νk) = 0.

Hence

0 = 〈μk/a, f̂(·, k)〉 = 〈μk, f̂(·, k)/a〉 =
xjn+σn∫
xj0

f̂(y, k)
a(y)Gk(y)

dy = 0. (3.29)

In order to see that (3.29) is equivalent to (3.27), set

Fm =
∂�m
− Em−1,k(xjm)
∂�m
+ Em,k(xjm)

, m = 1, 2, . . . , n.

Identity (3.27) is

0 = Dn

xj1∫
xj0

f̂(y, k)
a(y)E0,k(y)

dy + F2F3 · · ·Fn

xj2∫
xj1

f̂(y, k)
a(y)E1,k(y)

dy+

· · · + Fn

xjn∫
xjn−1

f̂(y, k)
a(y)En−1,k(y)

dy +

xjn+1∫
xjn

f̂(y, k)
a(y)En,k(y)

dy.

Multiplying by 1/Dn, we obtain

0 =
xj1∫

xj0

f̂(y, k)
a(y)E0,k(y)

dy + (1/D1)
xj2∫

xj1

f̂(y, k)
a(y)E1,k(y)

dy+

· · · + (1/Dn−1)
xjn∫

xjn−1

f̂(y, k)
a(y)En−1,k(y)

dy + (1/Dn)

xjn+1∫
xjn

f̂(y, k)
a(y)En,k(y)

dy,

which is (3.29).
Therefore, we have constructed, via formula (3.25), a smooth solution to (3.20) on the interval 

(xj0 , xjn+σn
), which is flat at the extremes.

Subcase 5.2: Suppose that the extremes xj0 and xjn+σn
satisfy the assumptions in Case 2, i.e., the order of 

vanishing of a is greater than the order of vanishing of 
p plus one, at both xj0 and xjn+σn
.

If for some ε > 0 
p/a > 0 on (xj0 , xj0 + ε) and 
p/a < 0 on (xjn+1 − ε, xjn+1), then we may repeat the 
approach in Subcase 5.1.

Assume that 
p/a > 0 on (xj0 , xj0+ε) and 
p/a > 0 on (xjn+1−ε, xjn+1). Set C0 = 0 and C1, . . . , Cn given 
as in Subcase 5.1. With this choice, (3.25) defines a smooth solution to (3.20) on the interval (xj0 , xjn+σn

), 
which is flat at xj0 . As in Case 2, a direct computation (without exhibiting distributions in the kernel of 
the transpose operator) shows that this solution is also flat at xjn+1 .
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Assume now that 
p/a < 0 on (xj0 , xj0 + ε) and 
p/a < 0 on (xjn+1 − ε, xjn+1). We consider

û(x, k) = Em,k(x)

⎛⎝Cm −
xjm+1∫
x

f̂(y, k)
a(y)Em,k(y)

dy

⎞⎠ ,

for x ∈ (xjm , xjm+σm
), and m = 0, . . . , n. Setting Cn = 0, it follows that û(·, k) is smooth on (xjn , xjn+1 ]

and flat at xjn+1 . Similar to the previous subcase, in order to obtain a smooth solution on (xj0 , xjn+1 ], we 
choose

Cn−1 = − ∂�n
+ En,k(xjn)

∂�n
− En−1,k(xjn)

xjn+1∫
xjn

f̂(y, k)
a(y)En,k(y)

dy,

Cn−2 =
∂
�n−1
+ En−1,k(xjn−1)

∂
�n−1
− En−2,k(xjn−1)

⎛⎜⎝Cn−1 −
xjn∫

xjn−1

f̂(y, k)
a(y)En−1,k(y)

dy

⎞⎟⎠ ,

and, recursively, for all m = n − 2, . . . , 0,

Cm =
∂
�m+1
+ Em+1,k(xjm+1)
∂
�m+1
− Em,k(xjm+1)

⎛⎜⎝Cm+1 −
xjm+2∫

xjm+1

f̂(y, k)
a(y)Em+1,k(y)

dy

⎞⎟⎠ .

Again, as in Case 2, a direct computation (without exhibiting distributions in the kernel of the transpose 
operator) shows that this solution is also flat at xj0 .

We complete this Subcase 5.2 by considering the situation in which 
p/a < 0 on (xj0 , xj0 + ε) and 

p/a > 0 on (xjn+1 −ε, xjn+1). In this case, we may construct a solution û(·, k) with the following procedure: 
Set C0 = C1 = 0 and define

û(x, k) = −E0,k(x)
xj1∫
x

f̂(y, k)
a(y)E0,k(y)

dy,

for x ∈ (xj0 , xj1); define

û(x, k) = E1,k(x)
x∫

xj1

f̂(y, k)
a(y)E1,k(y)

dy,

for x ∈ (xj1 , xj2). For m = 2, . . . , n and for x ∈ (xjm , xjm+1), we set

û(x, k) = Em,k(x)

⎛⎜⎝Cm +
x∫

xjm

f̂(y, k)
a(y)Em,k(y)

dy

⎞⎟⎠ ,

in which C2, . . . , Cn are given as in Subcase 5.1. As before, this procedure gives us a solution û(·, k) to 
(3.20), which is smooth on [xj0 , xjn+1 ] and flat at {xj0 , xjn+1}.

Subcase 5.3: We now treat the case in which the extremes xj0 and xjn+σn
satisfy the assumptions in Case 3, 

i.e., the order of vanishing of 
p is equal to the order of vanishing of a′, at both xj0 and xjn+σn
. In addition, 
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for m = 0, n + 1, either �p + k vanishes less than a at xjm or 
p(njm−1)(xjm) + (�/njm)a(njm )(xjm) �= 0, for 
all � ∈ N.

The construction of a solution û(·, k) to (3.20) on (xj0 , xjn+σn
) is analogous to the one in subcase 5.1. 

That is, on each interval (xjm , xjm+1), m = 0, . . . , n, it is given by the formula (3.25), with C0 = 0 and 
Cm satisfies (3.26), for m = 1, . . . , n. This gives a smooth solution on [xj0 , xjn+σn

), which is flat at xj0 (as 
explained in the end of Case 3). We now proceed to show that this solution is flat at xjn+σn

.
Pick φ(x) = [1 − cos(x − xj0)]M [1 − cos(x − xjn+σn

)]M , M ∈ N, which vanishes only at {xj0 , xjn+σn
}, 

with finite order of vanishing. Moreover, if M is large enough, then φ/E0,k is bounded on a small interval 
(xj0 , xj0 + ε) and φ/En,k is bounded on a small interval (xjn+σn

− ε, xjn+σn
).

Take μk a distribution in D′(T 1) which satisfies: on the open interval (xj0 , xj1), μk = φ/Ek,0; on 
(xjn , xjn + σn), μk = φ/(DnEn,k); on (xj0 , xjn+σn

), μk = φ/Gk, with Gk given by (3.28); finally μk = 0 on 
T 1 \ [xj0 , xjn+σn

].
By using the division theorem, there exists ωk = μk/(aφ) ∈ D′(T 1), which is supported on [xj0 , xjn+σn

]
and aGkωk = 1 on (xj0 , xjn+σn

). As before, on (xj0 , xjn+σn
) we have

0 = ∂x(aGkωk) = Gk(∂x(aωk) − (p + ik)ωk).

It follows that ∂x(aωk) − (p + ik)ωk is a linear combination of derivatives of δ(x −xjm), m = 0, . . . , n +1. 
By Lemma 3.3, we obtain νk such that −∂x(a(ωk − νk)) + (p + ik)(ωk − νk) = 0. Hence

0 = 〈ωk, f̂(·, k)〉 = 〈μk, f̂(·, k)/(aφ)〉 =
xjn+σn∫
xj0

f̂(y, k)
a(y)Gk(y)

dy.

As in subcase 5.1, this implies that û(·, k) is also flat at xjn+σn
.

Subcase 5.4: If the extreme xj0 belongs to one of the situations treated in Subcases 5.1–5.3, and the other 
extreme xjn+σn

belongs to another situation treated in Subcases 5.1–5.3, we may combine the previous 
techniques in order to construct a solution û(·, k) to (3.20), which is smooth on (xj0 , xjn+σn

) and flat at 
{xj0 , xjn+σn

}. The arguments are similar to the ones in Case 4.

Subcase 5.5: To complete the Case 5, we now turn our attention to the other situation, when xj0 + 2π =
xjn+σn

and for all m = 0, . . . , n, n + 1, the order of vanishing of 
p is equal to the order of vanishing of 
a′ at xjm . Moreover, �p(xjm) + k = 0 and �p + k vanishes at xjm of order at least njm , and there exists 
�m ∈ N such that 
p(njm−1)(xjm) + (�m/njm)a(njm )(xjm) = 0. In other words, now the extremes xj0 and 
xjn+σn

are of the same type as the middle zeros xj1 , . . . , xjn .
If ∂�n+1

− En,k(xjn+1)Dn �= ∂�0
+ E0,k(xj0), then we must choose C0 satisfying

[
∂�0
+ E0,k(xj0)

∂
�n+1
− En,k(xjn+1)

−Dn

]
C0 = Dn

xj1∫
xj0

f̂(y, k)
a(y)E0,k(y)

dy+

F2F3 · · ·Fn

xj2∫
xj1

f̂(y, k)
a(y)E1,k(y)

dy + · · ·+

Fn

xjn∫
xjn−1

f̂(y, k)
a(y)En−1,k(y)

dy +

xjn+1∫
xjn

f̂(y, k)
a(y)En,k(y)

dy.

With this choice, formula (3.25) defines a smooth solution to (3.20) on T 1.
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On the other hand, if ∂�n+1
− En,k(xjn+1)Dn = ∂�0

+ E0,k(xj0), then Gk(x) given in (3.28) belongs to C∞(T 1). 
We then set C0 = 0 and the same argument used in subcase 5.1, via Lemma 3.3, shows that the formula 
(3.25) defines a smooth solution to (3.20) on T 1.

We now proceed to conclude our proof. After Cases 1–5, by joining the pieces of solutions, we are able to 
construct a smooth solution û(x, k) to (3.20) on T 1. We must show that this sequence of solutions decays 
rapidly. It is enough to show the decay on each one of its pieces.

First, note that the situation treated in Case 5 occurs for at most finitely many indices k ∈ Z. Hence, to 
show the rapid decaying, there is no need to consider the solutions produced in this case.

As in [6], the solutions constructed in Case 1 decay rapidly on the intervals (xj , xj+σ), since the real part 
of Ek(x) does not depend on k, and then it does not affect the rapid decaying.

Likewise, we see that the solutions constructed in Case 3 decay rapidly on the intervals (xj , xj+σ).
Arguing as in [4], we see that the solutions constructed in Case 2 also decay rapidly on the intervals 

(xj , xj+σ).
Since in Case 4 the solutions have the same formulas as in Cases 1 − 3, it follows that they also decay 

rapidly on (xj , xj+σ).
Therefore, the sequence of smooth solutions û(·, k) decays rapidly. Consequently,

u(x, t) =
∑
k∈Z

û(x, k) exp{ikt}

belongs to C∞(T 2) and satisfies Lpu = f . This completes the proof of Theorem 3.4. �
It is curious that the perturbation of zero order p may turn the global solvability of L0 : C∞(T 2) →

C∞(T 2) stronger. For instance, under the assumptions in Theorem 3.4, the vector field L0 has closed range 
with infinite codimension.

In contrast, for certain functions p, the operator Lp : C∞(T 2) → C∞(T 2) may have a range with finite 
codimension.

Consider the operator L : C∞(T 2) → C∞(T 2) given by

L = ∂t + cos2(x)q(x)∂x + q(x),

in which q is real-valued and never vanishes. We claim that this operator is surjective. Indeed, if μ ∈ ker tL, 
then on (π/2, 3π/2) we have

a(x)μ̂(x, k) = C exp

⎧⎨⎩
x∫

π

1
cos2

⎫⎬⎭ exp

⎧⎨⎩−ik

x∫
π

1
q cos2

⎫⎬⎭ ,

in which a(x) = q(x) cos2(x). Since the function

exp

⎧⎨⎩−
x∫

π

1
cos2

⎫⎬⎭ , x ∈ (π/2, 3π/2),

is flat at x = 3π/2, it follows that C = 0. Similarly, we have a(x)μ̂(x, k) = 0 on (3π/2, 5π/2). Hence μ̂(x, k)
is a linear combination of derivatives of deltas with centers at π/2, 3π/2 and 5π/2. Finally, by using the 
equation (a(x)μ̂(x, k))′ + (ik − q(x))μ̂(x, k) = 0 and calculations in the proof of Lemma 3.3), we can show 
that this linear combination must be identically zero. Therefore, ker tL = {0}. By Theorem 3.4, we have 
LC∞(T 2) = (ker tL)◦ = C∞(T 2).
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3.1. Solvability in the space of Schwartz distributions

We now consider Lp : D′(T 2) → D′(T 2).
By Theorem 3.4 we know that La′−p : C∞(T 2) → C∞(T 2) is globally solvable, and since −Lp = tLa′−p, 

it follows that Lp is globally solvable on D′(T 2). Hence, we have proved:

Proposition 3.5. If a−1(0) �= ∅ and a vanishes only of finite order, then the operator Lp given by (1.3) is 
globally solvable on D′(T 2).

In which follows, we study the surjectivity of the operator Lp : D′(T 2) → D′(T 2).
According to [6], the operator L0 is surjective on D′(T 2) whenever a−1(0) �= ∅ and a vanishes only of 

finite order. This property may be affected by the perturbations p. Since C∞(T 2) is reflexive and by using 
Hanh-Banach Theorem, it follows that Lp is surjective on D′(T 2) if and only if La′−p is injective on C∞(T 2). 
In particular, we see that La′ is not surjective on D′(T 2), since any constant belongs to kerL0. On the other 
hand, L−a′ is surjective on D′(T 2). Indeed, if a smooth function u belongs to kerL2a′ , then for each k ∈ Z

and j ∈ {1, . . . , N}, there exists a constant Cjk such that

û(x, k) = Cjk exp

⎧⎪⎨⎪⎩−
x∫

ηj

ik + 2a′

a
(s)ds

⎫⎪⎬⎪⎭ , x ∈ (xj , xj+1).

Hence, |û(x, k)| = |Cjk|a(ηj)2/a(x)2, which implies that Cjk = 0.
After presenting the two examples above, we now proceed to treat the general situations.
Suppose that 
p − a′ vanishes as much as a at the points in a−1(0) = {x1 < x2 < · · · < xN}. If for all 

k ∈ Z and each j ∈ {1, . . . , N}, the function �p − k vanishes less than a at xj (respectively xj+1), then Lp

is surjective on D′(T 2). Indeed, for u ∈ kerLa′−p we have

û(x, k) = Cjk exp

⎧⎪⎨⎪⎩
x∫

ηj


p− a′

a
(s)ds

⎫⎪⎬⎪⎭ exp

⎧⎪⎨⎪⎩i

x∫
ηj

�p− k

a
(s)ds

⎫⎪⎬⎪⎭ , (3.30)

whenever x ∈ (xj , xj+1). Hence, if Cjk �= 0, then the limit limx→x+
j
û(x, k) (respectively limx→x−

j+1
û(x, k)) 

does not exist. It follows that kerLa′−p = {0}. Therefore, Lp is surjective.
Assume now that 
p − a′ vanishes as much as a at the points in a−1(0) and there exist k0 ∈ Z and 

j0 ∈ {1, . . . , N} such that the function �p − k0 vanishes as much as a at both xj0 and xj0+1. By analysing 
formula (3.30) we see that Lp is not surjective if and only if �p − k0 vanishes as much as a at each xj and

2π∫
0

ik0 + a′ − p

a
(s)ds ∈ iZ.

From now on, we assume that there exists a point in a−1(0) at which 
p − a′ vanishes less than a. We 
then consider intervals of the type (xj , xj+σ) such that on (xj , xj+σ) ∩ a−1(0) the function ik + a′ − p

vanishes as much as a and it vanishes less than a at the extremes xj and xj+σ. In order to see if there exists 
u ∈ kerLa′−p such that û(x, k) does not vanish identically on (xj , xj+σ), we may assume (by the comments 
above) that 
p − a′ vanishes less than a at the extremes.

Assume that there exists an interval (xj , xj+σ) such that at the extremes, xj and xj+σ, the order of 
vanishing of a is greater than the order of vanishing of 
p − a′ plus one. In addition, if (
p − a′)/a is 
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positive near xj and it is negative near xj+σ, then Lp is not surjective on D′(T 2). Indeed, in order to 
exhibit a smooth function in kerLa′−p \ {0}, it is enough to consider

u(x, t) = û(x, k) exp{ikt}

such that û(·, k) is given by

û(x, k) = exp

⎧⎪⎨⎪⎩−
x∫

ηj

ik + a′ − p

a
(s)ds

⎫⎪⎬⎪⎭
= exp

⎧⎪⎨⎪⎩
x∫

ηj


p− a′

a
(s)ds

⎫⎪⎬⎪⎭ exp

⎧⎪⎨⎪⎩i

x∫
ηj

�p− k

a
(s)ds

⎫⎪⎬⎪⎭ ,

x ∈ (xj , xj+σ), and û(x, k) = 0, if x ∈ T 1 \ (xj , xj+σ).
In the presence of a point in a−1(0) at which the order of vanishing of 
p − a′ is equal to the order of 

vanishing of a′, we consider the chains

(xj0 , xj0+σ0 ] ∪ [xj1 , xj1+σ1) ∪ · · · ∪ [xjn , xjn+σn
) (3.31)

with the properties:

• xjm+σm
= xjm+1 , m = 0, . . . , n − 1,

• on each (xjm , xjm + σm) ∩ a−1(0) the function a vanishes less than ik + a′ − p,
• the order of vanishing of 
p − a′ is equal to the order of vanishing of a′ at xjm , m = 1, . . . , n.

If there exists m ∈ {1, . . . , n} such that either �p − k vanishes less than a at xjm or

njm(
p− a′)(njm−1)(xjm)/a(njm )(xjm) /∈ Z+,

then similar computations to the ones performed in the Appendix A allow us to conclude that, for every 
smooth function u ∈ kerLa′−p, its partial Fourier coefficient û(·, k) must vanish identically on (xj0 , xjn+σn

).
Suppose that for each m ∈ {1, . . . , n}, �p − k vanishes as much as a at xjm and (
p − a′)(njm−1)(xjm) =

�ma(njm )(xjm)/njm , for some �m ∈ N. In addition, if at both xj0 and xjn+σn
the order of vanishing of a is 

greater than the order of vanishing of 
p −a′ plus one, then we may proceed as in the proof of Theorem 3.4
(Case 5) to show that there exists a smooth function on kerLa′−p whose support is [xj0 , xjn+σn

] whenever 
(
p − a′)/a is positive near xj0 and it is negative near xjn+σn

.
If xjn+σn

= xj0 + 2π and �p − k vanishes as much as a at xj0 , and 
p − a′ vanishes at xj0 of the order 
of a′, then we again follow the lines in the proof of Theorem 3.4 (Case 5) in order to show that Lp is not 
surjective on D′(T 2) (kerLa′−p �= {0}) if and only if

−nj0(
p− a′)(nj0−1)(xj0)/a(nj0 ) ∈ Z+

and ∂�n+1
− En,k(xjn+1)Dn = ∂�0

+ E0,k(xj0), where here

Em,k(x) = exp

⎧⎨⎩−
x∫
ik + a′ − p

a
(s)ds

⎫⎬⎭ ,
ηm
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with ηm ∈ (xjm , xjm+σm
), m = 0, . . . , n.

The discussion above may be used to prove the following:

Theorem 3.6. Let Lp : D′(T 2) → D′(T 2) be given by (1.3). Assume that a vanishes only of finite order and 
that ∅ �= a−1(0) = {x1 < · · · < xN}. Operator Lp is not surjective (i.e. LpD′(T 2) � D′(T 2)) if and only if 
there exists an integer number k ∈ Z such that one of the following situations occurs:

(i) p − a′ − ik vanishes as much as a at a−1(0) and

2π∫
0

p− a′ − ik

a
(s)ds ∈ iZ.

(ii) there exists an interval (xj , xj+σ) such that at a−1(0) ∩ (xj , xj+σ) the function p − a′ − ik vanishes 
as much as a; at the extremes xj and xj+σ the order of vanishing of a is greater than the order of 
vanishing of 
p − a′ plus one; in addition, 
p − a′/a > 0 near xj and 
p − a′/a < 0 near xj+σ.

(iii) there exists a chain

(xj0 , xj0+σ0 ] ∪ [xj1 , xj1+σ1) ∪ · · · ∪ [xjn , xjn+σn
),

as in (3.31), such that the order of vanishing of a at the extremes xj0 and xjn+σn
is greater than the

order of vanishing of 
p − a′ plus one, (
p − a′)/a is positive near xj0 and it is negative near xjn+σn
, 

and for all m = 1, . . . , n, �p − k vanishes as much as a at xjm and

njm(
p− a′)(njm−1)(xjm)/a(njm )(xjm) ∈ Z+.

(iv) there exists a chain as in (3.31), such that xj0 + 2π = xjn+σn
and, for all m = 0, 1, . . . , n, �p − k

vanishes as much as a at xjm , 
p − a′ vanishes of the order of a′, and

njm(
p− a′)(njm−1)(xjm)/a(njm )(xjm) ∈ Z+.

In addition ∂�n+1
− En,k(xjn+1)Dn = ∂�0

+ E0,k(xj0), where

Dn =
∂�1
−E0,k(xj1) · · · ∂�n

− En−1,k(xjn)
∂�1
+ E1,k(xj1) · · · ∂�n

+ En,k(xjn)

and

Em,k(x) = exp

⎧⎨⎩−
x∫

ηm

ik + a′ − p

a
(s)ds

⎫⎬⎭ ,

with ηm ∈ (xjm , xjm+σm
), m = 0, . . . , n.

4. Further results: coefficient a flat at some point

This section treats cases in which a is flat at some point. We begin by studying the case in which a
vanishes identically. As mentioned in [6], the operator ∂t is globally solvable. As we will see in the sequel, 
Lp = ∂t+p may be non-globally solvable. Indeed, if there exists k0 ∈ Z such that p +ik0 is flat at some point 
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but it does not vanish identically, then proceeding as in [6] we can show that Lp is not globally solvable on 
C∞(T 2). For instance, if F is the set of points at which p + ik0 is flat and picking x1 ∈ ∂F, then

f(x, t) = p + ik0

1 − cos(x− x1)
⊗ exp{ik0t}

belongs to (ker tLp)◦ \ LpC∞(T 2).
Assume now that, for all k ∈ Z, p + ik vanishes identically or it has only zeros of finite order. We will 

show that Lp is globally solvable in this case.
Given f ∈ (ker tLp)◦, we will construct u ∈ C∞(T 2) such that Lpu = f . For the integers k ∈ Z such that 

p + ik vanishes identically, we have

f̂(x, k) ⊗ exp{−ikt} ∈ ker tLp;

hence,

2π∫
0

f̂(x, k)2dx = 0.

This implies that f̂(x, k) vanishes identically. In this case, we may set û(x, k) ≡ 0 as a solution to

(p(x) + ik)û(x, k) = f̂(x, k). (4.1)

We now move on to solve (4.1) to the indices k such that p + ik vanishes only of finite order (or it does 
not vanish). Since p is bounded, for all but a finite number of indices k, the function p + ik never vanishes 
and we have a unique smooth solution given by û(x, k) = f̂(x, k)/(p(x) + ik). From this formula we see that 
the sequence û(x, k) decays rapidly, since f̂(x, k) decays rapidly.

Finally, let k1, . . . , kr be the integers such that p + ikj has zeros of finite order. To define a solution 
û(x, kj) to

(p(x) + ikj)û(x, kj) = f̂(x, kj),

it is enough to show that we may assume that each f̂(x, kj) is flat at the finite set of zeros ∪r
j=1(p +ikj)−1(0). 

Hence, as in Section 3, we need a reduction modulo flat functions. This is obtained by using cutoff functions 
and applying the following:

Lemma 4.1. Suppose that p ∈ C∞(x0 − ε, x0 + ε) (p is complex-valued), a ∈ C∞((x0 − ε, x0 + ε), R) and x0
is a zero of a of infinity order. Given f ∈ (ker tLp)◦, there exists u ∈ C∞((x0 − ε, x0 + ε) × T 1) such that 
Lpu − f is flat at {x0} × T 1.

Proof. Given f, u ∈ C∞((x0 − ε, x0 + ε) × T 1), we use formal Taylor series to write

u(x, t) �
∞∑
j=0

uj(t)(x− x0)j , uj(t) = 1
j!∂

j
xu(x0, t),

f(x, t) �
∞∑
j=0

fj(t)(x− x0)j , fj(t) = 1
j!∂

j
xf(x0, t),

a(x) �
∞∑

aj(x− x0)j ≡ 0, since aj = 1
j!a

(j)(x0),

j=0
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and

p(x) �
∞∑
j=0

pj(x− x0)j , pj = 1
j!p

(j)(x0).

The formal Taylor series of Lpu − f is

Lpu− f �
∞∑
j=0

(
u′
j +

j∑
k=0

pkuj−k − fj

)
(x− x0)j .

It follows that Lpu − f is flat at {x0} × T 1 if and only if

u′
0 + p0u0 = f0, (4.2)

u′
1 + p0u1 = f1 − p1u0, (4.3)

u′
j + p0uj = fj − p1uj−1 − · · · − pju0, j ≥ 1. (4.4)

After finding the sequence of solutions (uj)j∈Z+ , the required function u is obtained by employing Borel’s 
Lemma. Hence the proof reduces to solve equations (4.2)–(4.4).

If p0 /∈ iZ, then we may solve (4.2)–(4.4) recursively.
Assume now that p0 = −im, m ∈ Z, and p1 �= 0. Then δ(x −x0) ⊗e−imt ∈ ker tLp and since f ∈ (ker tLp)◦, 

we may find u0 which solves (4.2). Moreover, the solutions are of the form

u0(t) =
∑
k∈Z

û0(k)eikt,

where û0(m) is any complex number and û0(k) = (p0 + ik)−1f̂0(k), for k �= m.
We then choose û0(m) = f̂1(m)/p1, so that we may solve next equation, (4.3). Again, the coefficient 

û1(m) must be û1(m) = [f̂2(m) − p2û0(m)]/p1, so that we may solve next equation.
This recursive procedure allows us to find solutions u0, u1, . . . , uj , . . ..
Suppose now that p0 = −im, m ∈ Z and p1 = 0. Set j0 the smallest index j > 1 such that pj �= 0 and 

p� = 0, � = 1, . . . , j − 1. If such a smallest index does not exist, then we say j0 = ∞.
Equations (4.2)–(4.4) reduce to

u′
j + p0uj = fj , j = 0, . . . , j0 − 1 (4.5)

u′
j0 + p0uj0 = fj0 − pj0u0, (4.6)

u′
j + p0uj = fj − pj0uj−j0 − · · · − pju0, j ≥ j0. (4.7)

As before, equations (4.5) may be solved, since f ∈ (ker tLp)◦ and δ(�)(x − x0) ⊗ e−imt ∈ ker tLp, � =
0, . . . , j0 − 1. After this, we solve (4.6) by adjusting û0(m). Finally, after finding the solutions u0, . . . , uj0+k

recursively, we find a solution uj0+k+1 to the next equation by adjusting uk+1.
The proof of Lemma 4.1 is completed. �
The discussion above allows to prove the following:

Theorem 4.2. The operator ∂t + p is globally solvable on C∞(T 2) if and only if for each k ∈ Z the function 
p(x) + ik is not flat at any point or it vanishes identically.
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Since t(∂t − p) = −(∂t + p), Theorem 4.2 implies that ∂t + p is globally solvable on D′(T 2), provided 
that, for each k ∈ Z, the function p(x) + ik is not flat at any point or it vanishes identically. On the other 
hand, assume that there exists k0 such that p + ik0 does not vanish identically and it is flat at some point. 
Proceeding as in [6], we will show that ∂t + p is not globally solvable on D′(T 2). Setting G = T 1 \ F, in 
which F denotes the set of points at which p + ik0 is flat, it follows that G is a non-empty open subset of T 1. 
If (α, β) is a connected component of G and χα,β is the characteristic function of (α, β), then we can show 
that the distribution χα,β(x) ⊗ exp{ik0t} belongs to ◦(kerL−p) \LpD′(T 2), where L−p = ∂t − p. Therefore, 
we obtain the following version of Theorem 4.2.

Theorem 4.3. The operator ∂t + p is globally solvable on D′(T 2) if and only if, for each k ∈ Z, the function 
p(x) + ik is not flat at any point or it vanishes identically.

4.1. Assuming that a does not vanish identically and it is flat at some point

In this case, we stress that the search for solutions of Lpu = f and the description of the distributions 
in ker tLp become quite chaotic, since we may have infinitely many zeros of finite (or infinite) order accu-
mulating near a zero of infinite order of the coefficient a. Hence, following our approach, it is more difficult 
to control, at these points, the interactions between the order of vanishing of the functions a and p + ik. 
Although we do not have a complete answer in this case, we will present a result to shed light to the general 
problem.

Recall that operator (1.2) is not globally solvable (on neither C∞(T 2) nor D′(T 2)) if a−1(0) �= T 1 and a
is flat at some point (see [6]).

Similar to the comment in the previous section, if p is in the range of L0, then Lp is still non-globally 
solvable (on either C∞(T 2) or D′(T 2)). However, now the range of L0 is not well-understood, since L0 is 
not globally solvable. We only know that L0C∞(T 2) is a subspace of (ker tL0)◦.

Next result will cover situations where p is not in the range of L0, but Lp remains non-globally solvable.

Proposition 4.4. Suppose that a does not vanish identically and there exists k ∈ Z such that both a and 
p + ik are flat at a same point. Then operator Lp is not globally solvable on C∞(T 2).

Proof. Since the global solvability of Lp : C∞(T 2) → C∞(T 2) implies the global solvability of tLp :
D′(T 2) → D′(T 2), it is enough to show that the latter is not globally solvable.

Picking x0 at the boundary of the set

{x ∈ T 1; a and p + ik are flat at x},

we will show that there exist constants c0, c1 ∈ C such that the distribution [c0δ(x −x0) +c1δ
′(x −x0)] ⊗e−ikt

belongs to ◦(kerLp) \ tLpD′(T 2).
Firstly, we assume that there exists a sequence xn → x0 such that a(xn) �= 0, for all n. If u ∈ kerLp, we 

have

∂xû(xn, k) +
[
p(xn) + ik

a(xn)

]
û(xn, k) = 0.

When limn→∞
|p(xn)+ik|
|a(xn)| neither exists nor is finite, then û(x0, k) = 0. Hence δ(x − x0) ⊗ e−ikt belongs 

to ◦(kerLp).
When limn→∞

|p(xn)+ik|
|a(xn)| is a real number, then using a subsequence, if necessary, we may assume that 

there exists c ∈ C such that [δ′(x − x0) + cδ(x − x0)] ⊗ e−ikt belongs to ◦(kerLp).
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If there exists a sequence xn → x0 such that p(xn) + ik �= 0, for all n, then a similar argument allows 
us to conclude that there exists a distribution of the form [c0δ(x − x0) + c1δ

′(x − x0)] ⊗ e−ikt, belonging to 
◦(kerLp).

Finally, the below result implies that no distribution of the form [c0δ(x − x0) + c1δ
′(x − x0)] ⊗ e−ikt

belongs to the range of tLp. �
Lemma 4.5. If a and q are functions flat at 0, and r is a non-negative integer, then there is no distribution 
μ satisfying aμ′ + qμ =

∑r
j=0 cjδ

(r) + c on an interval (−ε, ε), for any c, cj ∈ C, cr �= 0 and ε > 0.

Proof. Suppose that there exists μ ∈ D′(−ε, ε) such that

aμ′ + qμ =
r∑

j=0
cjδ

(r) + c.

Then,

〈aμ′ + qμ, φ〉 =
r∑

j=0
cj(−1)jφ(j)(0) + c

ε∫
−ε

φ,

for all φ ∈ C∞
c (−ε, ε) and, consequently, there is a constant C > 0 and a positive integer m such that

∣∣∣∣∣∣∣
r∑

j=0
cj(−1)jφ(j)(0) + c

ε/2∫
−ε/2

φ

∣∣∣∣∣∣∣ ≤ C
m∑
j=0

sup
|x|<ε

|(qφ)(j)(x) − (aφ)(j+1)(x)|, (4.8)

for all φ ∈ C∞
c (−ε, ε) such that suppφ ⊂ [−ε/2, ε/2].

Let ψ0 ∈ C∞
c (−ε/2, ε/2) be a non-negative function and identically 1 on a neighborhood of [−ε/4, ε/4]. 

Define φ0 ∈ C∞
c (−ε/2, ε/2) by φ0(x) = xrψ0(x).

The derivatives of φ0 satisfy φ(j)
0 (0) = 0 if j �= r, and φ(r)

0 (0) = r!.
For n ∈ N, define φn(x) = φ0(nx). Then φn ∈ C∞

c (−ε/2n, ε/2n) and estimate (4.8) becomes (for each 
n ∈ N)

∣∣∣∣∣∣∣cr(−1)rr!nr + c

n

nε/2∫
−nε/2

φ0

∣∣∣∣∣∣∣ ≤ C
m∑
j=0

sup
|x|≤ε/2n

|(qφn)(j)(x) − (aφn)(j+1)(x)|;

hence,

|cr|r!nr/2 ≤ C

m∑
j=0

sup
|x|≤ε/n

|(qφn)(j)(x) − (aφn)(j+1)(x)|, (4.9)

for all n ∈ N large enough.
By writing q(x) = xm+1q̃(x), x ∈ (−ε, ε), we obtain

m∑
sup

|x|≤ε/2n
|(qφn)(j)(x)| =

m∑
sup

|x|≤ε/2n
|(d/dx)j [xm+1q̃(x)φ0(nx)]|.
j=0 j=0
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Taking n large enough, Leibniz’s rule implies

m∑
j=0

sup
|x|≤ε/2n

|(qφn)(j)(x)| ≤

m∑
j=0

j∑
�=0

(
j

�

)
sup

|x|≤ε/2n
|(d/dx)j−�(xm+1)(d/dx)�(q̃(x)φ0(nx))| ≤

(m + 1)!
m∑
j=0

(j!)2
j∑

�=0

�∑
k=0

sup
|x|≤ε/2n

∣∣∣xm+1−j+�q̃(k)(x)n�−kφ
(�−k)
0 (nx)

∣∣∣ ≤
(m + 1)!

m∑
j=0

(j!)2nj−m−1
j∑

�=0

�∑
k=0

sup
|x|≤ε/2

|q̃(k)(x)|
∥∥∥φ(�−k)

0

∥∥∥ ≤

n−1(m + 1)!(m!)2
m∑
j=0

j∑
�=0

�∑
k=0

sup
|x|≤ε/2

|q̃(k)(x)|
∥∥∥φ(�−k)

0

∥∥∥ .
Writing a(x) = xm+2ã(x), we see that a similar estimate is satisfied by the term

m∑
j=0

sup
|x|≤ε/2n

|(aφn)(j+1)(x)|.

Therefore, by (4.9) we obtain C̃ > 0 such that

|cr|r!nr+1 ≤ C̃,

for all n ∈ N large enough, which is a contradiction. �
Corollary 4.6. Suppose that a does not vanish identically and there exists k ∈ Z such that both a and p + ik

are flat at a same point. Then operator Lp is not globally solvable on D′(T 2).

The proof is quite similar to the proof of Proposition 4.4 and it will be omitted.
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Appendix A

Here we perform the computations which show that the solution û(·, k), presented in the proof of Theo-
rem 3.4, subcase 5.1, is smooth on (xj0 , xjn+σn

). Recall that a vanishes only of finite order and a−1(0) is a 
finite set {x1 < x2 < · · · < xN}. In addition, nj is the order of vanishing of a at xj , and we have a chain of 
intervals
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(xj0 , xj0+σ0 ] ∪ [xj1 , xj1+σ1) ∪ · · · ∪ [xjn , xjn+σn
),

with n ≤ N , such that xjm+1 = xjm+σm
, m = 0, . . . , n − 1, and on each (xjm , xjm+σm

) the function p + ik

(k ∈ Z) vanishes as much as a. We set xjn+1 = xjn+σn
. At each xjm , m = 1, . . . , n, the function �p + k

vanishes as much as a, while 
p vanishes of order njm − 1 and 
p(njm−1)(xjm) + (�m/njm)a(njm )(xjm) = 0, 
for some �m ∈ {1, 2, . . .}. On each (xjm , xjm+1), we pick ηm ∈ (xjm , xjm+σm

) and we write

Em,k(x) = exp

⎧⎨⎩−
x∫

ηm

p + ik

a
(s)ds

⎫⎬⎭ ,

and

û(x, k) = Em,k(x)

⎛⎜⎝Cm +
x∫

xjm

f̂(y, k)
a(y)Em,k(y)

dy

⎞⎟⎠ ,

with

Cm =
∂�m
− Em−1,k(xjm)
∂�m
+ Em,k(xjm)

⎛⎜⎝Cm−1 +
xjm∫

xjm−1

f̂(y, k)
a(y)Em−1,k(y)

dy

⎞⎟⎠ .

We will show that û(·, k) is smooth at each xjm , m = 1, . . . , n.
On a neighborhood of xjm , we write 
p(s) = (s − xjm)njm−1ρ(s) and a(s) = (s − xjm)njmα(s), with 

ρ(xjm) �= 0 and α(xjm) �= 0. Since 
p(njm−1)(xjm) = (−�m/njm)a(njm )(xjm), we obtain (ρ/α)(xjm) = −�m. 
Hence (ρ/α)(s) = (s − xjm)β(s) − �m.

It follows that (
p/a)(s) = β(s) − �m(s − xjm)−1, on a neighborhood of xjm , in which β is smooth.
For ε > 0 small enough and x ∈ (xjm , xjm + ε), we write

Em,k(x) =φm,k(x) exp

⎧⎪⎨⎪⎩
x∫

xjm+ε

�m
s− xjm

ds

⎫⎪⎬⎪⎭
=φm,k(x)(x− xjm)�mε−�m ,

where

φm,k(x) = exp

⎧⎨⎩−
xjm+ε∫
ηm

p + ik

a
(s)ds

⎫⎬⎭ exp

⎧⎪⎨⎪⎩−
x∫

xjm+ε

β(s) + i
�p(s) + k

a(s) ds

⎫⎪⎬⎪⎭
is smooth on a neighborhood of xjm .

We have ∂�
+Em,k(xjm) = 0 if � < �m, and

∂�
+Em,k(xjm) = �!

(�− �m)!∂
�−�mφm,k(xjm)ε−�m , if � ≥ �m.

In particular

∂�
+Em,k(xjm)
�m

=
(

�

�

)
∂�−�mφm,k(xjm)

φ (x ) , for all � ≥ �m.

∂+ Em,k(xjm) m m,k jm
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Setting γ(s) = −β(s) − i�p(s)+k
a(s) , the above identity shows that there exists a polynomial q in (� − �m)-

variables which satisfies

∂�
+Em,k(xjm)

∂�m
+ Em,k(xjm)

=
(

�

�m

)
q(γ(xjm), γ′(xjm), . . . , γ(�−�m−1)(xjm)).

With a similar procedure, we also obtain ∂�
−Em−1,k(xjm) = 0 if � < �m, and

∂�
−Em−1,k(xjm)

∂�m
− Em−1,k(xjm)

=
(

�

�m

)
q(γ(xjm), γ′(xjm), . . . , γ(�−�m−1)(xjm)),

if � ≥ �m.
It follows that

∂�
+Em,k(xjm)

∂�m
+ Em,k(xjm)

=
∂�
−Em−1,k(xjm)

∂�m
− Em−1,k(xjm)

, (A.1)

for all � ≥ �m.
Since f̂(·, k) is flat at xjm , by the expression of û(·, k) on (xjm−1 , xjm) we obtain ∂�

−û(xjm , k) = 0, if 
� < �m, and

∂�
−û(xjm , k) = ∂�

−Em−1,k(xjm)

⎛⎜⎝Cm−1 +
xjm∫

xjm−1

f̂(y, k)
a(y)Em−1,k(y)

dy

⎞⎟⎠ ,

if � ≥ �m.
Similarly, ∂�

+û(xjm , k) = 0 if � < �m, and ∂�
+û(xjm , k) = ∂�

+Em,k(xjm)Cm if � ≥ �m.
Therefore, the definition of Cm and identity (A.1) yield that û(·, k) is smooth at xjm .
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