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In the present work our main goal is to improve the polynomial decay obtained
recently by Santos and Almeida (2017) for a Timoshenko system with type III
thermoelasticity. More specifically, in the generic case of different wave speeds of
propagation, it is proved by the authors that problem is polynomially stable with
decay rate t=1/4 for the Dirichlet boundary condition. Here, our objective is to
consider the same problem and prove, still in the general situation of different
wave speeds, that the decay rate for the Dirichlet boundary condition is t—1/2,
which consists in a faster decay than the previous one.

©2019 Elsevier Ltd. All rights reserved.

1. Introduction

In this work we are going to deal with the following Timoshenko model with thermoelasticity of type II1
coupled on the shear force:

P10t — k(e +¢)e +00,, =0 in (0,1) x RT, (1.1)
pg’l/]tt — waa? —+ k(sﬁz —+ 'l/)) — 0'015 =0 in (O,Z) X R+, (12)
p39tt — 59;1;1 — ’y@mt + U(Soa:t + 1/%) =0 in (0, Z) X R+7 (].3)

subject to initial conditions

90('70) = 900(')’ @t('vo) = 901(')7 1/1('70) = "1}0(')’ ¢t<'70) = wl(')’ (1.4)
0(-,0) = 00(+), 6:(-,0) =01(-) in (0,1), :

and either boundary conditions the full Dirichlet one
©(0,t) = (I, t) = ¥(0,t) = (I, t) = 0(0,t) = 0(l,t) =0, t >0, (1.5a)
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or the mixed Neumann-Dirichlet one
p:(0,t) = @, (1,t) = (0,t) =¢(l,t) = 0(0,t) =6(l,t) =0, t>0, (1.5b)

where p1, pa2, p3, k,b, 9,7, o are positive coefficients, whose physical meanings are very well understood and
come from the material that composes a beam with length [ > 0, and the unknown functions ¢, and 6 are
related to transversal displacement, rotation angle and temperature, respectively.

The above model (1.1)—(1.3) is fully derived by Santos and Almeida Junior [1] by using the classical
governing motions for Timoshenko beams [2] and constitutive thermal law coupled on the shear force
where the heat flux conduction has its origins in the Green and Naghdi theories, here called as “type III
thermoelasticity”, see for instance [3,4]. In the occasion, in [1] the authors considered problem (1.1)—(1.3)
with initial-boundary conditions (1.4)—(1.5a) and, instead of (1.5b), they took into account the following
mixed Dirichlet—Neumann boundary condition

90(0715) - @(l,t) = 1/)$(0,t) = 7/}z(lvt) = er(oat) = em(lat) =0, t>0. (16)

For more details on the derivation of the model (1.1)—(1.3), we refer to [1, Section 1]. In its remaining sections,
the authors proved that the stability of problem (1.1)—(1.4) with boundary conditions (1.5a) or (1.6) depends
upon the following parameter referred to the difference of wave speeds of propagation:

k b
X = P (1.7)
More precisely, from [1, Theorem 5.9] one sees that problem (1.1)—(1.4) with boundary condition (1.6) is
exponentially stable if and only if y = 0 in (1.7). For (1.5a), the case x = 0 is only a necessary assumption
for exponential stability. In addition, according to [1, Theorem 6.2] when one considers different speeds of
wave propagation, that is, in the case x # 0, then problem (1.1)—(1.4) is only polynomially stable, with
decay rates given by:

Case 1. Optimal decay rate t—1/2 for (1.6);
Case 2. Slower decay rate t~/4 for (1.5a).

Similar results are also achieved by Fatori et al. [5] for a Timoshenko system with type III thermoelasticity
coupled on bending moment. See, for instance, Sections 3 and 4 in [5].

Therefore, motivated by [1,5] and since there is no reason at all to conclude why Case I provides a
faster decay than Case 2 above, our main goal in the present paper is to prove that problem (1.1)—(1.5a) is
polynomially stable with decay rate ¢t~1/2 (corresponding to the optimal one) in the case x # 0. Moreover,
the same result extends to boundary condition (1.5b) and any other boundary conditions for which the
system is well posed. Such statements will be clarified in Section 2, where we give our main results, and
Section 4. Hence, our achievement in Theorem 2.1 provides the improvement of the polynomial decay rate
for (1.1)—(1.5a) when compared with [1, Theorem 6.2] and complements the results of [5] in what concerns
the same polynomial decay rate for different boundary conditions, by including the fully Dirichlet case (1.5a).

To the proof of Theorem 2.1, which will only be completed in Section 3, the main difference with the
proof of Theorem 6.2 in [1] is that there the authors used a one dimensional version of the Trace Theorem
(see on page 663 of [1]) to handle boundary point-wise terms in the case of boundary condition (1.5a). This

procedure leads them to a ¢

)

‘poor” estimate in the case of such a boundary condition, see e.g. [1, Lemma
5.4], and has been done by using the same techniques as used [5] to handle boundary point-wise terms.
Here, differently from [1,5], our proofs are based on local estimates through cut-off functions combined with
a recent observability inequality introduced in [6,7] for the resolvent equation related to non-homogeneous
Timoshenko systems. Therefore, such a technique allowed us to achieve the same estimate no matter which

boundary condition we are taking into account. As a consequence, an improved result on polynomial stability
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is achieved in the case x # 0. The case x = 0 is also studied for the sake of completeness. All results and
their proofs are given in Sections 2 and 3. We believe the same methodology could be properly extended
to other Timoshenko systems with thermal law coupled on bending moment, for example, those considered
with type III thermoelasticity [5,8,9] as well as those with distinguished thermal laws [10-13].

2. Semigroup approach and main results

Let us initially consider the phase spaces
Hy = H(0,1) x L*(0,1) x Hy(0,1) x L*(0,1) x Hg(0,1) x L*(0,1) for (1.5a),

and
Ho = HL(0,1) x L2(0,1) x H(0,1) x L*(0,1) x H}(0,1) x L*(0,1) for (1.5b),

where H1(0,1) = H'(0,1) N L2(0,1) and L2(0,1) = {u e L2(0,1); L [Lu(w)dz = 0}. It is well-known that
H;, for each j = 1,2, is a Hilbert space endowed with norm

l
01, = [ [prl# 4l 9 + pal 41" + Hual® + Ko + 017 + 516, .
0

for U = (¢, ®,9, ¥,0, ©)T € H;, and respective scalar product (-,-)z. .

J
As in [1, Section 3] we convert system (1.1)—(1.5) into the following abstract problem

U=A;U, t>0, 1)
U(0) = (o, 1,%0,%1,00,01)" := U, :
where A; : D(A;) C H; — H; is defined by
P
k o
v
AJU — Yz 7(‘;039 +7/1)+79 ’ (2 2)
P2 P2
e

for any U = (¢, ®,9, ¥,0, 0)T € D(A;), with domain
D(A) ={U€eH, | &, ¥,0 € Hj(0,1), p,1,60 +vO € H*(0,1)} for (1.5a),

and
D(A) ={U€eMa | &€ H(0,]), ¥,0 € Hy(0,1), p,0,00 +~76 € H*(0,1)} for (1.5b).

As stated in [1, Theorem 3.1], A; is the infinitesimal generator of a Cpy-semigroup of contractions
T(t) = eit on H;. Thus, problem (2.1) has a unique solution according to Pazy [14].
Next we present our main result on polynomial stability.

Theorem 2.1. Under the above notations and assuming x # 0 in (1.7), then there exists a constant C,, > 0
independent of Uy € D(A;™), n > 1 integer, such that the semigroup solution U(t) = eAitUy, for each
7 =1,2, satisfies

C
IOl < S I00lpeam, = +oc. (2.3)
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Just to complement the result given in [1, Theorem 5.9], we state a similar result on exponential stability
for (1.1)—(1.5) under the equal wave speeds assumption.

Theorem 2.2. Under the above notations and assuming x = 0 in (1.7), then there exist constants C,y > 0
independent of Uy € H; such that the semigroup solution U(t) = ety decays as

1T I3, < Ce [ Uolla;, > 0. (2.4)

The proofs of Theorems 2.1 and 2.2 will be completed at the end of the next section.

3. Proofs

Let us start by considering the resolvent equation
iU -A;U=F, j=1,2, (3.1)

with U = (807 @,1}[)’ waaa 9)T7 F= (flaf?a f37f4af5,f6)T and Aj defined in (22)
Lemma 3.1. Under the above notations, we have iR C p(A;), where p(A;) is resolvent set of A;, j =1,2.
Proof. The proof is similar to that given in [1, Theorem 5.1]. See also [15, Lemma 4.5]. O

Lemma 3.2. Under the above notations, there exists a constant C' > 0 such that

1621172 < ClIU 3¢, 1 F 13- (3.2)
Proof. First we recall that A4; is dissipative on H; with
Re (AU, U)y; = —7/01 10,7 de <0, YUeD(A)), j=1,2. (3.3)
Then, from (3.1) and (3.3) we obtain (3.2) readily for some C > 0. O

Lemma 3.3. Under the above notations, there exists a constant C' > 0 such that

1621172, 1662 +7Oz72 < ClIU g, | Fll3; (3.4)

Proof. It follows easily from the fifth component of the resolvent equation (3.1) and (3.2). See, for instance,
[15, Lemma 4.7]. O

Remark 3.4 (Cut-off Functions). Now, it is the precise moment where our arguments are different from [1,5].
For instance, whereas on page 663 of [1] the authors use a Trace Theorem to handle boundary point-wise
terms, here we are going to deal with local estimates by using auxiliary cut-off functions motivated by [6,7].
In this way, we do not get different estimates for each boundary term as obtained, for example, in [5, Lemma
3.9] and [1, Lemma 5.4].

Let us consider Iy € (0,1) and 0 > 0 arbitrary numbers such that (o — d,lp + ) C (0,), and a function
s € 0%(0,1) satisfying
supp s C (lo —6,lp +9), 0<s(z) <1, ze€(0,]), (3.5)

s(x)=1 for zelp—6/2,lo+6/2). (3.6)



M.A. Jorge Silva and S.B. Pinheiro / Applied Mathematics Letters 96 (2019) 95-100 99

Lemma 3.5. Under the above notations, there exists a constant C' > 0 such that

lo+o c
2 2 1/2 1/2 1/2 1/2
s (oo +9* +101*) de < — (1602 + 7Ol 10507 + WU I 2 IF 132 103,
lo—6 |ﬁ|/ J J j

0—

o
16l

C 2/3117714/3 2
+ WH(SQI +70: > HU”H]- + COU a4 1 Fll#; + CHF”H]-'

+ 771100 + 7 Ou| L2 [U][, (3.7)

In addition, given € > 0 there exists a constant Cc > 0 such that

lo+5/2 , , ) )
/ 1y (o #0419 do < U, + IR, (3.8)
-~

Proof. The proof is done by following verbatim the same arguments as in [6, Proposition 3.3]. See also [15,
Lemma 4.8] for all computations. O

Now we consider another auxiliary cut-off function s; € C?(0,1) such that
supp s1 C (lo —9/2,lo +9/2), 0<si(z) <1, ze€(0,]), (3.9)

81(1‘):1 for $6[10—5/3,Z0+5/3}. (310)

Since we do not have a dissipative mechanism associated with bending moment, then the next estimates
and their consequences will depend on the parameter y set in (1.7).

Lemma 3.6. Under the above notations and considering € > 0, we claim:

(i) If x # 0, then there exists a constant C. > 0 such that
lo+6/3 ) ) A
[ al + 19 do < €U, + CulBl' P, (3.11)
0—9/3
(i) If x = 0, then there exists a constant C. > 0 such that

l0+5/3 9 9
[l 1917) do < U, + CIFIR,, (3.12)

lo—5/3

Proof. The computations can be done similarly to [6, Corollary 3.6]. We also refer to [15] (see Lemmas 4.9
and 4.10 and also Corollary 4.11 therein) for all computations. O

Completion of the proof of Theorem 2.1. It is combination of the previous lemmas, along with
Lemma 3.6-(7). The approach is similar to [6, Theorem 4.1]. See also on page 110 in [15]. O

Completion of the proof of Theorem 2.2. It is a particular consequence of the previous case, by applying
now Lemma 3.6-(4¢). It can be done analogously to [6, Theorem 4.3]. See also on page 109 in [15]. O

4. Conclusion

Let us finish by considering some concluding remarks on Theorems 2.1 and 2.2 as follows.
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(i) Improvement. Theorem 2.1 asserts that, in general, the problem (1.1)—(1.5) is polynomially stable with

rates depending on the regularity of the initial data, but independent of the boundary conditions in (1.5).

The polynomial decay rate t~/2 achieved in (2.3), for Uy € D(A)), is independent of the boundary

conditions in (1.5). Therefore, for the case of full Dirichlet condition (1.5a), this achievement improves
the decay t~'/4 obtained in [I, Theorem 6.2].

(i) Optimality. The decay rate ¢t~

1/2 i5 optimal for the boundary condition (1.5b) and the proof is similar to

that given in [1, Section 6] for the boundary condition (1.6). Consequently, from this and Theorem 2.2, the

Timoshenko system (1.1)—(1.4) with boundary condition (1.5b) is exponential stable if and only if x = 0,

which corresponds to [1, Theorem 5.9].
(#i1) Generality. Our approach on local estimates given in Section 3 along with the observability inequality

allows us to conclude the same polynomial decay rate (corresponding to the optimal one t=1/ 2) in the case
x # 0 and the same exponential stability in the case x = 0 for any other different boundary conditions
whose problem is well-posed, including (1.6).
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