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Abstract. In this paper we first explore the deduction of the mathematical model for some
viscoelastic Timoshenko systems. As a consequence, a new partially dissipative viscoelastic Tim-
oshenko system arises with damping mechanism acting only on the shear force. Then, we prove
uniform decay rates for this new system with the help of a modern observability inequality, where
the assumption of equal speeds of wave propagation is regarded as a sufficient condition. Moreover,
we prove that equal wave speeds is also a necessary condition to establish uniform decay rates.
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1. Introduction. This paper addresses the model deduction, uniform, and non-
uniform stability results to the following Timoshenko system with a viscoelastic
dissipation mechanism coupled on the shear force:
(1.1)\left\{       

\rho 1\phi tt  - \kappa (\phi x + \psi )x + \kappa 

\int t

0

g(t - s)(\phi x + \psi )x(s)ds = 0 in (0, L)\times \BbbR +,

\rho 2\psi tt  - b\psi xx + \kappa (\phi x + \psi ) - \kappa 

\int t

0

g(t - s)(\phi x + \psi )(s)ds = 0 in (0, L)\times \BbbR +,

where L > 0 is the length of the beam and \BbbR + = (0,\infty ). Corresponding to the
unknown variables \phi and \psi , we consider the Dirichlet--Neumann boundary condi-
tion and initial data to be set later. The physical meaning of the positive constants
\rho 1, \rho 2, \kappa , b > 0 as well as the relaxation function g > 0, the latter also known as the
memory kernel, will be precisely introduced in the next section.

To the best of our knowledge, system (1.1) has not been considered in the lit-
erature. Its mathematical formulation consists by taking a viscoelastic deformation
on the shear force only as presented in section 2, where we use the ideas introduced
by Pr\"uss [30, Chapter 9] and Drozdov and Kolmanovskii [12, Chapter 5] on integro-
differential (viscoelastic) equations.
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On the other hand, when the viscoelastic law is only applied to the bending
moment, the classical viscoelastic Timoshenko system emerges:

(1.2)

\left\{   
\rho 1\phi tt  - \kappa (\phi x + \psi )x = 0 in (0, L)\times \BbbR +,

\rho 2\psi tt  - b\psi xx + \kappa (\phi x + \psi ) + b

\int t

0

g(t - s)\psi xx(s) ds = 0 in (0, L)\times \BbbR +,

which has been studied by several authors in recent years. Concerning this problem
(1.2), under Dirichlet boundary conditions, we would like to mention here the pioneer
work by Ammar-Khodja et al. [3], whose main results on the corresponding energy
functional are summarized as follows (see [3, Theorems 2.7, 3.5, and 4.1]).

1. Under the assumption of equal wave speeds of propagation \kappa 
\rho 1

= b
\rho 2
, one has

\bullet if g is of exponential type, then the energy functional also decays expo-
nentially;

\bullet if g is of polynomial type, then the energy functional also decays poly-
nomially.

2. Under the assumption of different wave speeds of propagation \kappa 
\rho 1

\not = b
\rho 2
, one

has that
\bullet even though g is of exponential type, the energy functional does not

decay uniformly (for weak initial data).
Since problem (1.2) is partially dissipative, as we can see in case 1, both g and the

energy functional related to the solutions decay accordingly and uniformly, provided
that \kappa 

\rho 1
= b

\rho 2
. This scenario attracted the attention of many mathematicians and

several papers have been published in the literature, where more general uniform decay
rates are established. On the other hand, in case 2, just a few papers can be found
in the literature on the subject. As a matter of fact, in this scenario, a nonuniform
stabilization of the energy has been done by taking into account the regularity of initial
data and more regular solutions. For such generalizations and related problems, we
refer to [7, 10, 15, 16, 17, 25, 26, 27, 31] and references therein.

According to the above considerations and having in mind that system (1.2) has
been exhaustively studied lately, we turn our attention back to the new system (1.1).
The main novelties and contributions in the present paper are threefold:

1. To give a precise deduction on the mathematical modeling for system (1.1)
by using viscoelastic constitutive laws, which are physically consistent; see
section 2.

2. To provide uniform stability results for (1.1), under the mathematical
assumption of equal speeds of wave propagation (equal wave speeds, for short)

(1.3)
\kappa 

\rho 1
=

b

\rho 2
,

and combining a new observability inequality with recent abstract results on
stability for problems with memory as introduced by Lasiecka et al. [18, 21];
see section 3.

3. To prove that condition (1.3), which puts emphasis on the physical character
of the system, is also necessary to obtain uniform decay rates for the energy
functional associated with (1.1). To this purpose, we follow the ideas as
introduced by Ammar-Khodja et al. [3]; see section 4.

Remark 1.1. Let us give some comments on the equal wave speeds condition (1.3).
Due to the physical meaning of the coefficients (see, e.g., (2.13)), it is worth pointing
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out that (1.3) is physically never satisfied. Indeed, under the notation established in
(2.13), the assumption (1.3) turns into G = E/k. On the other hand, as highlighted,
e.g., in [24, 29] we have from the theory of elasticity that the relation between these
two elastic modulus is given by G = E

2(1+\nu ) , where \nu \in (0, 12 ) is the Poisson's ratio. It

means that the identity k = 2(1 + \nu ) must hold true, which is physically impossible
since k < 1. Therefore, the assumption (1.3) and the results in section 3 are only
considered from a mathematical point of view. However, in order to address the
problem from a physical aspect as well, we still consider the case of different wave
speeds \kappa 

\rho 1
\not = b

\rho 2
, which led to the results in section 4.

2. Deduction of viscoelastic Timoshenko beams. In this section, in order
to derive some viscoelastic Timoshenko beams models, mainly in what concerns (1.1),
we combine some classical elastic equations that arise from Timoshenko ideas on
beams (see [32, 33]), together with constitutive relations on viscoelasticity for ma-
terials containing hereditary (history) properties; see, for instance, Pr\"uss [30] and
Drozdov and Kolmanovskii [12]. A classical modeling of linear viscoelastic (wave-
like) equations was first provided by Dafermos [8, 9] in the 1970s. Lately, a quite new
approach on wave equations with memory was provided by Frabrizio, Giorgi, and
Pata in [13], where the authors came up with a new treatment for integro-differential
equations with general kernels, providing a wider class of relaxation functions.

Let us start with Boltzmann theory [4, 5] for aging viscoelastic materials, where
the stress \sigma is assumed to depend not only on the (instantaneous) strain \epsilon but also
on the strain history \{ \epsilon (s); 0 \leq s \leq t\} . Thus, the stress-strain constitutive law reads

\sigma (\cdot , t) = E

\biggl\{ 
\epsilon (\cdot , t) +

\int t

0

\mu \prime (t - s)\epsilon (\cdot , s)ds
\biggr\} 

= E

\biggl\{ 
\epsilon (\cdot , t) - 

\int t

0

g(t - s)\epsilon (\cdot , s)ds
\biggr\} 
,

where the constant E stands for the Young modulus of elasticity and the function \mu 
is known as the relaxation measure of the bar material. Also, we denote g :=  - \mu \prime > 0
for convenience in future statements.

In what follows, according to the theory developed for viscoelastic Timoshenko
beams type, bending and shear deformations shall be considered for vibrations of
prismatic bars, which extends somehow the Euler--Bernoulli assumptions for beams.
Indeed, Timoshenko assumptions on beams allow for a rotation movement from the
cross section and bending lines. This rotation angle comes from a shear deformation,
which was not considered in Euler--Bernoulli assumptions, where the cross section is
kept perpendicular to the bending line. Finally, having in mind the classical theories
of Pr\"uss [30, Chapter 9] and Drozdov and Kolmanovskii [12, Chapter 5], we make the
following considerations.

Let us consider a beam [0, L] \times \Omega of length L > 0 and uniform cross section
\Omega \subset \BbbR 2 made of homogeneous isotropic viscoelastic material. In the initial Timo-
shenko hypotheses it is assumed that

\bullet (0, 0) is the center of \Omega , so that
\int 
\Omega 
zdydz =

\int 
\Omega 
ydydz = 0;

\bullet the bending takes place only on the (x, z)-plane;
\bullet diam\Omega << L (thin beams) and normal stresses are negligible in general;
\bullet there are only two relevant stresses \sigma 11 and \sigma 13 in the stress tensor \sigma = \{ \sigma ij\} .
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Thus, for viscoelastic Timoshenko beams, the stress-strain relations can be considered
as follows:

\sigma 11(x, z, t) = E

\biggl\{ 
\epsilon 11(x, z, t) - 

\int t

0

g1(t - s)\epsilon 11(x, z, s)ds

\biggr\} 
,(2.1)

\sigma 13(x, z, t) = 2kG

\biggl\{ 
\epsilon 13(x, z, t) - 

\int t

0

g2(t - s)\epsilon 13(x, z, s)ds

\biggr\} 
,(2.2)

where G is the constant shear modulus, k is a shear correction coefficient, and g1, g2
are relaxation kernels. Accordingly, the displacements and the rotation angle are
denoted as follows:

\bullet u = u(x, t), the longitudinal displacement of points lying on the horizontal
axis;

\bullet \phi = \phi (x, t), the vertical (lateral) bar displacement;
\bullet \psi = \psi (x, t), the angle of rotation for the normal to the longitudinal axis;
\bullet w1(x, z, t) = u(x, t) + z\psi (x, t), longitudinal displacement;
\bullet w2(x, z, t) = \phi (x, t), vertical displacement.

Under this notation, the standard formulas for the components of the infinitesimal
strain tensor (see, e.g., (2.4) on p. 339 in [12]) can be expressed by

\epsilon 11(x, z, t) :=
\partial w1

\partial x
= ux(x, t) + z\psi x(x, t),(2.3)

\epsilon 13(x, z, t) :=
1

2

\biggl( 
\partial w1

\partial z
+
\partial w2

\partial x

\biggr) 
=

1

2
(\psi (x, t) + \phi x(x, t)) .(2.4)

Additionally, concerning formulas to compute bending moment and shear force (see,
e.g., (9.10)--(9.11) on p. 237 in [30]) we find

M(x, t) =

\int 
\Omega 

z\sigma 11(x, z, t)dydz,(2.5)

S(x, t) =

\int 
\Omega 

\sigma 13(x, z, t)dydz,(2.6)

respectively, which are normalized identities by the area A and inertial moment I of
the cross section \Omega , namely,

A =

\int 
\Omega 

dydz and I =

\int 
\Omega 

z2dydz.

Hence, using relations (2.1), (2.3), and (2.5), one can compute the classical (and
well-known) viscoelastic law for bending moment,

M = E

=0\underbrace{}  \underbrace{}  \biggl( \int 
\Omega 

zdydz

\biggr) \biggl( 
ux  - 

\int t

0

g1(t - s)ux(s)ds

\biggr) 
+ E

\biggl( \int 
\Omega 

z2dydz

\biggr) 
\underbrace{}  \underbrace{}  

=I

\biggl( 
\psi x  - 

\int t

0

g1(t - s)\psi x(s)ds

\biggr) 
,

that is,

(2.7) M = EI

\biggl( 
\psi x  - 

\int t

0

g1(t - s)\psi x(s) ds

\biggr) 
.
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Moreover, from relations (2.2), (2.4), and (2.6), the following new viscoelastic law for
shear force arises:

(2.8) S = kGA

\biggl( 
(\phi x + \psi ) - 

\int t

0

g2(t - s)(\phi x + \psi )(s)ds

\biggr) 
.

Summarizing, the constitutive relations (2.7)--(2.8) provide bending and shear
deformations in the context of Timoshenko beams over viscoelastic materials depend-
ing on strain history. It is worth mentioning that when neglecting viscoelastic effects
(for example, if the memory kernels vanish g1 = g2 = 0), then (2.7) and (2.8) ob-
viously become the classical elastic relations for bending moment and shear force,
respectively:

M = EI\psi x,(2.9)

S = kGA(\phi x + \psi ).(2.10)

Finally, in order to derive the desired viscoelastic Timoshenko systems, we con-
sider the classical model in differential equations for vibrations of prismatic beams
originated in Timoshenko's works [32, 33]:

(2.11)

\left\{   \rho A\phi tt  - Sx = 0,

\rho I\psi tt  - Mx + S = 0,

for (x, t) \in (0, L)\times \BbbR +, where \rho represents the mass density per area unit. Therefore,
under the above considerations, we are able to provide a precise deduction of at least
three different types of viscoelastic Timoshenko systems as follows.

2.1. Viscoelastic law acting only on the bending moment. Using (2.7)
and (2.10), system (2.11) turns into the classical partially viscoelastic Timoshenko
problem:

(2.12)

\left\{     
\rho A\phi tt  - kGA(\phi x + \psi )x = 0,

\rho I\psi tt  - EI

\biggl( 
\psi xx  - 

\int t

0

g1(t - s)\psi xx(s) ds

\biggr) 
+ kGA(\phi x + \psi ) = 0,

which is precisely the well-known problem (1.2) by denoting the memory kernel g1 as
g and the coefficients

(2.13) \rho 1 = \rho A, \rho 2 = \rho I, \kappa = kGA, b = EI.

As stated in section 1, problem (2.12) and its related version with past history were
first introduced by Ammar-Khodja et al. [3] and Mu\~noz Rivera and Fern\'andez Sare
[27] and, subsequently, studied by several authors in the context of stability along
the time.

2.2. Viscoelastic law acting only on the shear force. In this case, using
(2.8) and (2.9) instead of (2.7) and (2.10), respectively, system (2.11) becomes the
partially viscoelastic Timoshenko problem

(2.14)

\left\{       
\rho A\phi tt  - kGA

\biggl( 
(\phi x + \psi )x  - 

\int t

0

g2(t - s)(\phi x + \psi )x(s)ds

\biggr) 
= 0,

\rho I\psi tt  - EI\psi xx + kGA

\biggl( 
(\phi x + \psi ) - 

\int t

0

g2(t - s)(\phi x + \psi )(s)ds

\biggr) 
= 0,
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which consists exactly of the new viscoelastic problem proposed in (1.1) with coeffi-
cients given by (2.13) and memory kernel denoted by g2 = g, which is taken just to
simplify the notation. As remarked in section 1, this system has not been considered
in the literature and constitutes the main object of study in this paper.

2.3. Viscoelastic law applied to both deformations. To supplement the
set of different viscoelastic Timoshenko systems arising from the above modeling, we
can take into account both viscoelastic laws (2.7)--(2.8). In this case, system (2.11) is
driven to the next fully viscoelastic Timoshenko system:

(2.15)

\left\{                 

\rho A\phi tt  - kGA

\biggl( 
(\phi x + \psi )x  - 

\int t

0

g2(t - s)(\phi x + \psi )x(s)ds

\biggr) 
= 0,

\rho I\psi tt  - EI

\biggl( 
\psi xx  - 

\int t

0

g1(t - s)\psi xx(s) ds

\biggr) 
+ kGA

\biggl( 
(\phi x + \psi ) - 

\int t

0

g2(t - s)(\phi x + \psi )(s)ds

\biggr) 
= 0.

A slightly changed version of (2.15) was considered by Grasselli, Pata, and Prouse [14],
who presented the problem with past history, nonlinear source terms, and external
forces. Thus, the asymptotic behavior of solutions was studied by assuming that both
kernels g1 and g2 are of exponential type. In this case, since there are two viscoelastic
damping mechanisms acting on the system, all results obtained for (2.15) do not
depend on the relation between the wave speeds; see, for instance, [14, section 3].

3. Uniform stability: The case of equal wave speeds. In this section we
shall prove, under assumption (1.3), the uniform stability of the viscoelastic Timo-
shenko model (1.1) with coefficients \rho 1, \rho 2, \kappa , b > 0 given in (2.13). Such a statement
will be achieved as a consequence of a new observability inequality to the energy
solution combined with recent (and general) results from [18, 21].

In order to simplify notation hereafter, let us start by fixing the standard convo-
lution operator denoted as

(g \ast u)(t) :=
\int t

0

g(t - s)u(s)ds.

Thus, having in mind such a notation, we can rewrite system (1.1) as follows:

\rho 1 \phi tt  - \kappa (\phi x + \psi )x + \kappa (g \ast (\phi x + \psi )x) = 0 in (0, L)\times \BbbR +,(3.1)

\rho 2 \psi tt  - b \psi xx + \kappa (\phi x + \psi ) - \kappa (g \ast (\phi x + \psi )) = 0 in (0, L)\times \BbbR +.(3.2)

To the couple (\phi , \psi ) we consider the mixed Dirichlet--Neumann boundary condition

(3.3) \phi (0, t) = \phi (L, t) = \psi x(0, t) = \psi x(L, t) = 0, t \geq 0,

and initial conditions
(3.4)

\phi (x, 0) = \phi 0(x), \phi t(x, 0) = \phi 1(x), \psi (x, 0) = \psi 0(x), \psi t(x, 0) = \psi 1(x), x \in (0, L).

3.1. Notation and preliminary results. Let us start by introducing the fol-
lowing standard functional spaces:
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L2 := L2(0, L), | | u| | 22 =

\int L

0

| u(x)| 2 dx,

H1 := H1(0, L), | | u| | 2H1 = \| ux\| 22 + \| u\| 22,

L2
\ast := L2

\ast (0, L) =

\Biggl\{ 
u \in L2(0, L) ;

1

L

\int L

0

u(x) dx = 0

\Biggr\} 
,

H1
0 := H1

0 (0, L) =
\Bigl\{ 
u \in H1(0, L) ;u(0) = u(L) = 0

\Bigr\} 
,

H1
\ast := H1

\ast (0, L) =

\Biggl\{ 
u \in H1(0, L) ;

1

L

\int L

0

u(x) dx = 0

\Biggr\} 
.

Due to Poincar\'e's inequality, we can also consider the equivalent norms in H1
0 and H1

\ast ,

| | u| | H1
0
= \| ux\| 2 and | | u| | H1

\ast 
= \| ux\| 2,

respectively. In this work, we will always denote by cp > 0 the Poincar\'e constant.

Assumption 3.1. g : \BbbR + \rightarrow \BbbR + is a nonincreasing differentiable function such that

(3.5) g(0) > 0 and l := 1 - 
\int \infty 

0

g(s)ds > 0.

Using the pattern of the Faedo--Galerkin method (see Lions' book [23]) as applied
to wave equations with memory we get a result on existence and uniqueness for
(3.1)--(3.4). Such a result is summarized as follows and, for commodity, its proof
will be omitted.

Theorem 3.2. Under the Assumption 3.1 and taking (\phi 0, \phi 1, \psi 0, \psi 1) \in H1
0\times L2\times 

H1
\ast \times L2

\ast , there exists a unique weak solution (\phi , \psi ) of problem (3.1)--(3.4) in the class

(\phi , \psi ) \in C(\BbbR +;H1
0 \times H1

\ast ) \cap C1(\BbbR +;L2 \times L2
\ast ).

Furthermore, if (\phi 0, \phi 1, \psi 0, \psi 1) \in (H2\cap H1
0 )\times H1

0 \times (H2\cap H1
\ast )\times H1

\ast , then there exists
a unique strong solution (\phi , \psi ) of problem (3.1)--(3.4) in the class

(\phi , \psi ) \in C
\bigl( 
\BbbR +; (H2 \cap H1

0 )\times (H2 \cap H1
\ast )
\bigr) 
\cap C1(\BbbR +;H1

0 \times H1
\ast ).

Now we introduce some useful notation as follows. Given u \in L2
loc(\BbbR +;L2), we set

h(t) := 1 - 
\int t

0

g(s) ds,(3.6)

(g \diamond u)(t) :=
\int t

0

g(t - s)(u(t) - u(s)) ds,(3.7)

(g\square u)(t) :=
\int t

0

g(t - s)\| u(t) - u(s)\| 22 ds,(3.8)

\widehat u(x, t) := \int x

0

u(y, t) dy(3.9)

for t > 0 and x \in (0, L).
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Lemma 3.3. Under the above notation we have the following:
1. If u \in L2(0, T ;L2), T > 0, then

(3.10) u - (g \ast u) = h(t)u+ g \diamond u and \| (g \diamond u)(t)\| 22 \leq \| g\| L1(\BbbR +)(g\square u)(t).

2. If (\phi , \psi ) \in L2(0, T ;H1
0 \times H1

\ast ), T > 0, then

(3.11) p(\cdot , t) := \phi (\cdot , t) + \widehat \psi (\cdot , t) \in H1
0 (0, L).

Proof. The proof follows from direct computations.

In what follows, we are going to see that problem (3.1)--(3.4) is dissipative with
only one damping mechanism given by the convolution term involving the shear force
component. Indeed, under the above notation and given a weak solution (\phi , \psi ) of
problem (3.1)--(3.4), we define the corresponding energy functional \scrE (t) = \scrE (\phi (t), \psi (t),
\phi t(t), \psi t(t)), t \geq 0, by

(3.12) \scrE (t) := \rho 1
2
\| \phi t(t)\| 22 +

\rho 2
2
\| \psi t(t)\| 22 +

b

2
\| \psi x(t)\| 22 +

\kappa 

2
h(t)\| px(t)\| 22 +

\kappa 

2
(g\square px)(t),

where h(t) and p(\cdot , t) are given in (3.6) and (3.11), respectively.

Lemma 3.4. The energy \scrE (t) satisfies the following identity:

(3.13)
d

dt
\scrE (t) =  - D(t), t > 0,

where

D(t) =
\kappa 

2
g(t)\| px(t)\| 22  - 

\kappa 

2
(g\prime \square px)(t).

Proof. Taking the multipliers \phi t and \psi t in (3.1) and (3.2), respectively, a straight-
forward computation leads to (3.13).

From relation (3.13) and Assumption 3.1, one sees that d
dt\scrE (t) \leq 0, which implies

that the energy is nonincreasing with \scrE (t) \leq \scrE (0) for all t \geq 0.

3.2. Observability inequality. To the next result we assume an additional
hypothesis on g.

Assumption 3.5. The memory kernel g \in L1(\BbbR +) is assumed to satisfy

(3.14)

\int \infty 

0

g(s)ds > max

\biggl\{ 
31

32
,

64 \rho 1 L
2

64 \rho 1 L2 + \rho 2

\biggr\} 
.

Remark 3.6. At this point, let us give some comments on Assumption 3.5 as
follows.

i. We first note that the condition (3.14) means that the area below the graphic
of g must be bounded from below. It is, somehow, unusual for systems with
memory but it does not contradict the relation (3.5) since

C0 := max

\biggl\{ 
31

32
,

64 \rho 1 L
2

64 \rho 1 L2 + \rho 2

\biggr\} 
< 1.

We also observe that once C0 is close to 1, then (3.14) is a restrictive con-
dition because it confines the range of admissible coefficients and powers in



4528 ALVES, GOMES TAVARES, JORGE SILVA, AND RODRIGUES

kernel examples, which seems to be not very applied in physical situations.
Nevertheless, as we are going to see below in Example 3.7, such an assump-
tion does not prevent some (classic) examples of memory kernels featuring
different behaviors, recalling again that it is possible under proper restrictions
on the size of their coefficients and powers.

ii. Additionally, we would like to stress that assumption (3.14) is required due
to technical computations used to handle estimates for the new functionals
introduced in (3.18)--(3.20). More precisely, (3.14) is regarded to construct a
time t0 such that function 1  - h(t) (see (3.6)) is bounded from below by a
positive constant for all t \geq t0. Indeed, from (3.14) we infer that there exists
a time t0 > 0 large enough such that

(3.15) 1 - h(t) =

\int t

0

g(s) ds \geq 
\int t0

0

g(s) ds := g0 > C0 \forall t \geq t0.

With inequality (3.15) in mind, we still mention that it will be crucial in
the compatibility of the inequalities to be presented in (3.38). Summarizing,
Assumption 3.5 leads to (3.15), which in turn will be precisely used in (3.38)
and, consequently, in the inequalities right after.

Example 3.7. We illustrate some permissible kernels satisfying Assumptions 3.1
and 3.5, under suitable conditions imposed on the coefficients or/and powers.

(a) g(t) = b e - at for any b > 0 and b < a < b
C0
.

(b) g(t) = a
(t+1)\gamma for any \gamma > 1 and C0(\gamma  - 1) < a < \gamma  - 1.

(c) g(t) = a
(t+e)[ln(t+e)]2 for C0 < a < 1.

(d) g(t) = ae - tq for 0 < q < 1 and a > 0 properly chosen so that C0 <\int \infty 
0
g(s)ds < 1. For instance, in case C0 = 31

32 , then g(t) = 49
100e

 - t1/2 is a
concrete kernel.

(e) Again in case C0 = 31
32 , then peculiar kernels of transcendental type are given,

e.g., by

g(t) =
1

[1 + ln(t+ 1)]
27
20 [1+ln(t+1)]

and g(t) =
1

[t+
\surd 
e]

31
50 [ln(t+

\surd 
e)+1]

.

Proposition 3.8 (observability inequality). Let Assumptions 3.1 and 3.5 be in
place. If we additionally assume the equal wave speeds condition

(3.16)
\rho 1
\kappa 

=
\rho 2
b
,

then there exist a time T0 > 0 and a constant C > 0 such that

(3.17) \scrE ((n+ 1)T ) \leq C

\int (n+1)T

nT

(g\square px)(t)dt+ C

\int (n+1)T

nT

D(t)dt

for all n \in \BbbN and T > T0, where C > 0 is independent of n.

Proof. The proof will be done for regular solutions (\phi , \psi ) of (3.1)--(3.4) and the
same conclusion holds true for weak solutions by using density arguments.

We start by defining the functionals

\chi 1(t) := \rho 1(\phi (t), \phi t(t)) + \rho 2(\psi (t), \psi t(t)),(3.18)

\chi 2(t) :=  - \rho 1((g \diamond p)(t), \phi t(t)),(3.19)

\chi 3(t) :=  - \rho 2(h(t) px(t) + (g \diamond px)(t), \psi t(t)) - \rho 2(\psi x(t), \phi t(t)).(3.20)
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Next, we are going to estimate the time derivative of the functionals \chi i, i = 1, 2, 3.

Estimate for \chi \prime 
1(t). Taking the derivative of \chi 1(t) defined in (3.18), using

(3.1)--(3.2), and performing some integrations by parts, we have

\chi \prime 
1(t) = \rho 1\| \phi t(t)\| 22 + \rho 1(\phi (t), \phi tt(t)) + \rho 2\| \psi t(t)\| 22 + \rho 2(\psi (t), \psi tt(t))

= \rho 1\| \phi t(t)\| 22 + \rho 2\| \psi t(t)\| 22  - b\| \psi x(t)\| 22  - \kappa h(t)\| px(t)\| 22(3.21)

+\kappa ((g \diamond px)(t), px(t)).

Applying Cauchy--Schwarz's and Young's inequalities in (3.21), we obtain

\chi \prime 
1(t) \leq \rho 1\| \phi t(t)\| 22 + \rho 2\| \psi t(t)\| 22  - b\| \psi x(t)\| 22  - \kappa 

\biggl( 
h(t) - l

2

\biggr) 
\| px(t)\| 22

+
\kappa 

2l
\| (g \diamond px)(t)\| 22.(3.22)

Noting that h(t) - l
2 \geq h(t)

2 for all t > 0, we deduce from (3.22) that

\chi \prime 
1(t) \leq \rho 1\| \phi t(t)\| 22 + \rho 2\| \psi t(t)\| 22  - b\| \psi x(t)\| 22  - 

\kappa 

2
h(t)\| px(t)\| 22

+
\kappa 

2l
\| (g \diamond px)(t)\| 22.(3.23)

Estimate for \chi \prime 
2(t). Deriving the functional \chi 2(t) set in (3.19) and using (3.1),

we get

\chi \prime 
2(t) =  - \rho 1((g \diamond p)t(t), \phi t(t)) - \rho 1((g \diamond p)(t), \phi tt(t))

=  - \rho 1(1 - h(t))\| \phi t(t)\| 22  - \rho 1([(g
\prime \diamond p) + (1 - h) \widehat \psi t](t), \phi t(t))(3.24)

+\kappa \| (g \diamond px)(t)\| 22 + \kappa h(t)(px(t), (g \diamond px)(t)).

Using again Cauchy--Schwarz's and Young's inequalities one has

| ((g\prime \diamond p)(t), \phi t(t))| \leq 
g0
4
\| \phi t(t)\| 22 +

1

g0
\| (g\prime \diamond p)(t)\| 22,(3.25) \bigm| \bigm| \bigm| ( \widehat \psi t(t), \phi t(t))

\bigm| \bigm| \bigm| \leq \biggl[ 1
2
\| \phi t(t)\| 22 +

1

2
\| \widehat \psi t(t)\| 22

\biggr] 
,(3.26)

| (px(t), (g \diamond px)(t))| \leq (1 - g0)
\rho 1L

2

\rho 2
\| px(t)\| 22 +

\rho 2
4(1 - g0)\rho 1 L2

\| (g \diamond px)(t)\| 22.(3.27)

Replacing (3.25)--(3.27) in (3.24) we obtain

\chi \prime 
2(t) \leq  - \rho 1

2

\Bigl( 
1 - h(t) - g0

2

\Bigr) 
\| \phi t(t)\| 22 + \kappa (1 - g0)

\rho 1L
2

\rho 2
h(t)\| px(t)\| 22

+
\rho 1
2
(1 - h(t))\| \widehat \psi t(t)\| 22 + \kappa 

\biggl( 
1 +

\rho 2
4(1 - g0)\rho 1 L2

\biggr) 
\| (g \diamond px)(t)\| 22(3.28)

+
\rho 1
g0

\| (g\prime \diamond p)(t)\| 22.

From (3.15) we recall that 1 - h(t) \geq g0, and using standard computations, we conclude
from (3.28) that

\chi \prime 
2(t) \leq  - \rho 1 g0

4
\| \phi t(t)\| 22 + \kappa (1 - g0)

\rho 1L
2

\rho 2
h(t)\| px(t)\| 22 +

\rho 1 L
2

2
\| \psi t(t)\| 22

+
\rho 1 c

2
p

g0
\| (g\prime \diamond px)(t)\| 22 + \kappa 

\biggl( 
1 +

\rho 2
4(1 - g0)\rho 1 L2

\biggr) 
\| (g \diamond px)(t)\| 22(3.29)

for all t \geq t0, where cp > 0 is the Poincar\'e constant.
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Estimate for \chi \prime 
3(t). Deriving \chi 3(t) given in (3.20) we obtain

\chi \prime 
3(t) =  - \rho 2\| \psi t(t)\| 22 + \kappa [h(t)]2\| px(t)\| 22 + 2\kappa h(t) (px(t), (g \diamond px)(t))

+\kappa \| (g \diamond px)(t)\| 22 + \rho 2 (\psi t(t), [g px  - g\prime \diamond px](t))(3.30)

 - \rho 2(\psi x(t), \phi tt(t)) + b(\psi xx(t), [h px + g \diamond px](t)).

Integrating by parts the last term of (3.30) and using (3.1) we get

\chi \prime 
3(t) =  - \rho 2\| \psi t(t)\| 22 + \kappa [h(t)]2\| px(t)\| 22 + 2\kappa h(t) (px(t), (g \diamond px)(t))

+\kappa \| (g \diamond px)(t)\| 22 + \rho 2 (\psi t(t), [g px  - g\prime \diamond px](t))(3.31)

+

\biggl( 
b \rho 1
\kappa 

 - \rho 2

\biggr) 
(\psi x(t), \phi tt(t)).

Using over again Cauchy--Schwarz's and Young's inequalities, and recalling that g(t) \leq 
g(0) for all t > 0, we deduce

| (\psi t(t), [g px  - g\prime \diamond px](t))| \leq 
1

2
\| \psi t(t)\| 22 + g(0) g(t)\| px\| 22 + \| (g\prime \diamond px)(t)\| 22,(3.32)

| h(t)(px(t), (g \diamond px)(t))| \leq 
[h(t)]2

2
\| px(t)\| 22 +

1

2
\| (g \diamond px)(t)\| 22.(3.33)

Replacing (3.32)--(3.33) in (3.31) we have

\chi \prime 
3(t) \leq  - \rho 2

2
\| \psi t(t)\| 22 + 2\kappa [h(t)]2\| px(t)\| 22 + 2\kappa \| (g \diamond px)(t)\| 22

+ \rho 2 g(0) g(t)\| px(t)\| 22 + \rho 2 \| (g\prime \diamond px)(t)\| 22(3.34)

+

\biggl( 
b \rho 1
\kappa 

 - \rho 2

\biggr) 
(\psi x(t), \phi tt(t)).

Thus, regarding the equal wave speeds assumption (3.16), we conclude from (3.34)
that

\chi \prime 
3(t) \leq  - \rho 2

2
\| \psi t(t)\| 22 + 2\kappa [h(t)]2\| px(t)\| 22 + 2\kappa \| (g \diamond px)(t)\| 22

+ \rho 2 g(0) g(t)\| px(t)\| 22 + \rho 2 \| (g\prime \diamond px)(t)\| 22.(3.35)

Conclusion of the proof. Let \eta 1, \eta 2 > 0 be constants (to be determined later) and

(3.36) \chi (t) := \eta 1 \chi 1(t) + \eta 2 \chi 2(t) + \chi 3(t).

Taking the derivative of \chi (t) and using the estimates (3.23), (3.29), and (3.35), we
have

\chi \prime (t) \leq  - \rho 1
\Bigl( 
\eta 2
g0
4

 - \eta 1

\Bigr) 
\| \phi t(t)\| 22  - \eta 1 b\| \psi x(t)\| 22

 - 
\biggl( 
\rho 2
2

 - \eta 1\rho 2  - \eta 2
\rho 1 L

2

2

\biggr) 
\| \psi t(t)\| 22

 - \kappa 

\biggl( 
\eta 1
2

 - \eta 2 (1 - g0)
\rho 1L

2

\rho 2
 - 2h(t)

\biggr) 
h(t) \| px(t)\| 22(3.37)

+\kappa 

\biggl[ 
\eta 1
2l

+ \eta 2

\biggl( 
1 +

\rho 2
4(1 - g0)\rho 1 L2

\biggr) 
+ 2

\biggr] 
\| (g \diamond px)(t)\| 22

+ \rho 2 g(0) g(t)\| px(t)\| 22 +

\Biggl( 
\eta 2
\rho 1 c

2
p

g0
+ \rho 2

\Biggr) 
\| (g\prime \diamond px)(t)\| 22

for all t \geq t0.



VISCOELASTIC TIMOSHENKO SYSTEM 4531

Now it is the precise moment where we use the strength of Assumption 3.5, by
applying its prompt consequence (3.15). In fact, from the inequality g0 > C0 in (3.15),
it is possible to carefully choose \eta 1 and \eta 2 such that

(3.38)
32(1 - g0)

g0
< \eta 2 <

\rho 2
2\rho 1 L2

and 8(1 - g0) < \eta 1 <
1

4
min\{ \eta 2 g0, 1\} .

From the choices in (3.38) we observe that
\bullet \eta 2

g0
4  - \eta 1 > 0,

\bullet \rho 2

2  - \eta 1\rho 2  - \eta 2
\rho 1 L2

2 > 0,

\bullet \eta 1

2  - \eta 2 (1 - g0)
\rho 1L

2

\rho 2
 - 2h(t) > 3

2 (1 - g0) > 0 for all t \geq t0.

In this case, combining (3.38) and (3.37) we arrive at

\chi \prime (t) \leq  - C \scrE (t) + Cg0 \| (g \diamond px)(t)\| 22

+ \rho 2 g(0) g(t)\| px(t)\| 22 +

\Biggl( 
\eta 2
\rho 1 c

2
p

g0
+ \rho 2

\Biggr) 
\| (g\prime \diamond px)(t)\| 22,(3.39)

for all t \geq t0, and some constants C > 0 and

Cg0 := \kappa 

\biggl[ 
C

2
+
\eta 1
2l

+ \eta 2

\biggl( 
1 +

\rho 2
4(1 - g0)\rho 1 L2

\biggr) 
+ 2

\biggr] 
> 0.

Therefore, from (3.10), (3.13), and (3.39), we conclude that

(3.40) \chi \prime (t) \leq  - C \scrE (t) + C1 (g\square px)(t) + C1D(t) \forall t \geq t0,

for some constants C,C1 > 0.
Let us consider n \in \BbbN and T \geq t0. Thus, integrating (3.40) on (nT, (n + 1)T ),

we get
(3.41)

C

\int (n+1)T

nT

\scrE (t) dt \leq  - \chi (t)
\bigm| \bigm| \bigm| \bigm| (n+1)T

nT

+ C1

\int (n+1)T

nT

(g\square px)(t) dt+ C1

\int (n+1)T

nT

D(t) dt.

In addition, from the definition of functional \chi (t) in (3.36), we have

| \chi (t)| \leq \eta 1 | \chi 1(t)| + \eta 2 | \chi 2(t)| + | \chi 3(t)| 

\leq 1

2
[\rho 1(\eta 1 + \eta 2) + \rho 2] \| \phi t(t)\| 22 +

1

2
[\rho 1\eta 1 + \rho 2] \| \psi t(t)\| 22

+
1

2

\bigl[ 
2\rho 1\eta 1c

2
p + \rho 2

\bigr] 
\| px(t)\| 22 +

1

2

\bigl[ 
\rho 1\eta 1c

2
p(1 + 2c2p) + \rho 2

\bigr] 
\| \psi x(t)\| 22

+
1

2

\bigl[ 
\rho 1\eta 2c

2
p + \rho 2

\bigr] 
\| (g \diamond px)(t)\| 22

\leq C2

\biggl( 
\rho 1
2
\| \phi t(t)\| 22 +

\rho 2
2
\| \psi (t)\| 22 +

b

2
\| \psi x(t)\| 22 +

\kappa l

2
\| px(t)\| 22 +

\kappa 

2
\| (g \diamond px)(t)\| 22

\biggr) 
for some C2 > 0. From (3.6) and (3.10) we deduce

| \chi (t)| \leq C2 \scrE (t) \forall t \geq 0,

and, consequently,

(3.42)

\bigm| \bigm| \bigm| \bigm| \bigm| \chi (t)
\bigm| \bigm| \bigm| \bigm| (n+1)T

nT

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 2C2 [\scrE ((n+ 1)T ) + \scrE (nT )].
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Thus, from (3.41), (3.42) and since \scrE (t) is nonincreasing, we get

T \scrE ((n+ 1)T ) \leq 2C2 [\scrE ((n+ 1)T ) + \scrE (nT )] + C1

\int (n+1)T

nT

(g\square px)(t) dt(3.43)

+ C1

\int (n+1)T

nT

D(t) dt.

Hence, using again (3.13) in (3.43), we conclude

(T  - C) \scrE ((n+ 1)T ) \leq C

\int (n+1)T

nT

(g\square px)(t) dt+ C

\int (n+1)T

nT

D(t) dt,

from where inequality (3.17) follows for T > T0 := max\{ t0, 2C\} > 0. This completes
the proof of Proposition 3.8.

3.3. Uniform decay rates. Once we have obtained the observability inequality
(3.17), our stability results for the energy \scrE (t) set in (3.12) rely on the construction of

a suitable function to estimate
\int (n+1)T

nT
(g\square px)(t) dt in terms of the damping integral

term
\int (n+1)T

nT
D(t) dt. To do so, we state the same additional assumptions on the

memory kernel g as in [18, 21] (see also [6]). Hence, our next arguments in the proof
of stability are completely similar to those provided, e.g., in [21]. For the reader's
convenience, we provide a short proof in each case.

Assumption 3.9. The memory kernel g \in L1(\BbbR +)\cap C1(\BbbR +) satisfies the following
nonlinear differential inequality:

(3.44) g\prime (t) \leq  - H(g(t)) \forall t > 0,

whereH \in C1([0,\infty )) is a positive, strictly increasing, convex function withH(0) = 0.
We also assume that there exists \alpha 0 \in (0, 1) such that

(3.45)

\int \infty 

0

g1 - \alpha 0(s)ds <\infty .

Theorem 3.10 (uniform decay rate I). Under the assumptions of Proposition
3.8, if we also assume Assumption 3.9, then the energy \scrE (t) decays uniformly to zero
when t goes to infinity. More precisely, there exists T1 > 0 such that

(3.46) \scrE (t) \leq S

\biggl( 
t

T1
 - 1

\biggr) 
\forall t > T1,

where S(t) satisfies the ODE

(3.47)
d

dt
S(t) + q\alpha 0(S(t)) = 0, S(0) = \scrE (0),

with

q\alpha 0
\approx \widehat H\alpha 0

and \widehat H\alpha 0
(s) = c1H(c2s

1
\alpha 0 ),

for some constants c1, c2 > 0 which may depend on \alpha 0.
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Proof. As mentioned above, the statement of Theorem 3.10 follows by combining
Assumption 3.9 with estimate (3.17) and then applying Lemma 3.3 in [19]. For the
reader's convenience we present below a short proof.

According to [18, 21], conditions (3.44)--(3.45) are sufficient to guarantee the
existence of a positive, increasing, convex function H\alpha 0 given by

H\alpha 0
(s) = C1H(C2s

1
\alpha 0 ), C1, C2 > 0.

From Jensen's inequality we have

(3.48) (g\square px)(t) \leq H - 1
\alpha 0

(D(t)) \forall t > 0.

Integrating (3.48) on (nT, (n+1)T ) and applying again Jensen's inequality results in

(3.49)

\int (n+1)T

nT

(g\square px)(t) dt \leq \widehat H - 1
\alpha 0

\Biggl( \int (n+1)T

nT

D(t) dt

\Biggr) 
,

where \widehat H\alpha 0 is a rescaled version of H\alpha 0 given by

\widehat H\alpha 0(s) = TH\alpha 0

\bigl( 
T - 1s

\bigr) 
= TC1H

\Bigl( 
C2T

 - 1
\alpha 0 s

1
\alpha 0

\Bigr) 
.

From (3.17) and (3.49) there exists T1 > 0 such that

(3.50) \scrE ((n+ 1)T ) \leq \widetilde H - 1
\alpha 0

\Biggl( \int (n+1)T

nT

D(t)dt

\Biggr) 
\forall T > T1,

where we define

\widetilde H - 1
\alpha 0

(s) = C( \widehat H - 1
\alpha 0

+ Id)(s) =
\bigl[ 
c1H

 - 1(c2s)
\bigr] \alpha 0

+ Cs

with c1 = (C T )
1

\alpha 0 /C2 and c2 = 1/TC1 independent of n. It is worth noting that\widetilde H\alpha 0 \in C1([0,\infty )) is also a positive, increasing, convex function such that \widetilde H\alpha 0(0) = 0.
Now, combining (3.13) and (3.50) we arrive at

(3.51) \scrE ((n+ 1)T ) + \widetilde H\alpha 0
(\scrE ((n+ 1)T )) \leq \scrE (nT ) \forall T > T1.

Hence, applying Lemma 3.3 in [19] with

sn = \scrE (nT ), p = \widetilde H\alpha 0 , S(0) = \scrE (0),

we conclude that \scrE (t) satisfies (3.46), where S(t) is a solution of (3.47) so that

(3.52) q\alpha 0
= Id  - (Id + \widetilde H\alpha 0

) - 1 and lim
t\rightarrow \infty 

S(t) = 0.

Moreover, following [20, 21] one sees that q\alpha 0
= \widetilde H\alpha 0

(Id + \widetilde H\alpha 0
) - 1 \approx \widehat H\alpha 0

, which
finishes the proof of Theorem 3.10.

Note that the achievement of Theorem 3.10 is not sharp since the decay rate
depends on a parameter \alpha 0 < 1. To obtain such a sharp decay rate in the sense that
the energy decays at the same memory kernels rate, we must impose (like in [21]) the
following stronger technical assumption on g.
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Assumption 3.11. Let y be a solution of the system

dy

dt
+H(y) = 0, y(0) = g(0).

Also, let us assume that there exists \alpha 0 \in (0, 1) such that y1 - \alpha 0 \in L1(\BbbR +) and for
some r > 0,

(3.53) H \in C1([0,\infty )) \cap C2(0, r)

and

(3.54) lim inf
s\rightarrow 0+

\{ s2H \prime \prime (s) - sH \prime (s) +H(s)\} \geq 0.

Theorem 3.12 (uniform decay rate II). Under the assumptions of Proposition
3.8, if we additionally assume Assumptions 3.9 and 3.11, then there exists T2 > 0
such that the energy \scrE (t) satisfies

(3.55) \scrE (t) \leq S

\biggl( 
t

T2
 - 1

\biggr) 
\forall t > T2,

where S(t) satisfies the ODE

(3.56)
d

dt
S(t) + q1(S(t)) = 0, S(0) = \scrE (0),

with
q1 \approx \widehat H and \widehat H(s) = c3H(c4s),

for some constants c3, c4 > 0 which may depend on H and \alpha 0.

Proof. The statement of Theorem 3.12 is a consequence of the new Assumption
3.11 and estimate (3.17). Its proof relies on the same arguments as provided in [21]
with several technical tools. For a complete and detailed proof we refer to [21, section
14.3]. For the sake of brevity we only present a sketch of the proof.

According to Lemmas 14.4 and 14.5 in [21], conditions (3.53)--(3.54) are enough
to construct a function H1,\alpha 0

given by

H1,\alpha 0(s) = \alpha 0s
1 - 1

\alpha 0H(s
1

\alpha 0 ),

which is increasing and convex on (0, \delta ), for some \delta \in (0, r), H1,\alpha (0) = 0, and such
that

(3.57) (g\square px)(t) \leq H
 - 1

1,\alpha 0
(D(t)) \forall t > 0,

where H
 - 1

1,\alpha 0
(s) = C3H

 - 1
1,\alpha 0

(C4s) with constants C3, C4 > 0.
Integrating (3.57) on (nT, (n+ 1)T ) and applying Jensen's inequality we get

(3.58)

\int (n+1)T

nT

(g\square px)(t) dt \leq \widehat H - 1
1,\alpha 0

\Biggl( \int (n+1)T

nT

D(t) dt

\Biggr) 
,

where \widehat H - 1
1,\alpha 0

(s) = TH
 - 1

1,\alpha 0
(T - 1s) = TC3H

 - 1
1,\alpha 0

\bigl( 
C4T

 - 1s
\bigr) 
.



VISCOELASTIC TIMOSHENKO SYSTEM 4535

Combining (3.17) and (3.58), and proceeding similarly to (3.50)--(3.52), there exists
T2 > 0 such that \scrE (t) satisfies (3.55) and S(t) is the solution of (3.56) with

q1 := q1,\alpha 0 = Id  - (Id + \widetilde H1,\alpha 0)
 - 1 and \widetilde H - 1

1,\alpha 0
= c3 \widehat H - 1

1,\alpha 0
(c4s) + Cs

for some constants c3, c4 > 0. In addition, following Lemmas 14.7 and 14.8 in [21],

then q1,\alpha 0
has similar end behavior as \widehat H1,\alpha 0

which is a rescaled version of H1,\alpha 0
.

Finally, the above process can be reiterated for H1,\alpha 0
in finite steps with increasing

values of \alpha 0 to achieve a controlling function H1,1 \approx H satisfying the conclusion of
Theorem 3.12. The detailed proof of such iteration process is given in [21]. We also
refer to [22, subsection 2.3] for a (summarized) step by step iteration for optimality.

Remark 3.13. According to [18, 21], Assumptions 3.9 and 3.11 address (at least)
exponential and polynomial memory kernels similar to those expressed in the first two
items of Example 3.7.

4. Nonuniform stability: The case of different wave speeds. In this sec-
tion we are going to conclude that problem (3.1)--(3.4) is not uniform stable on the
weak phase space H1

0 \times L2 \times H1
\ast \times L2

\ast when the mathematical condition (1.3) is not
taken into account, that is, the case which highlights the physical meaning of the
system. Since problem (3.1)--(3.4) does not meet semigroup properties, we cannot use
directly the theory in linear operators as applied, for instance, to autonomous prob-
lems. Instead, we shall use a constructive semigroup approximation along with known
results on a spectrum of evolution operators; see [1, 2, 11, 28]. For this purpose, we
follow similar lines as in [3, section 3], where the authors give a particular (and nice)
treatment for the classical viscoelastic Timoshenko system (1.2).

Summarizing, we are going to show that condition (1.3) is necessary to reach
uniform decay rates of the energy solution, even in case of exponential kernels. Thus,
in what follows, we take (3.44) with H(s) = \delta s, 1 < \delta < 1

C0
, and then g satisfies

(4.1) g(t) \leq g(0)e - \delta t, t > 0.

Also, to the next considerations, we are going to denote by \scrE g(\phi , \psi )(t) the energy
functional set in (3.12) that corresponds to the solution (\phi , \psi ) of system (1.1). In this
section, our main result reads as follows.

Theorem 4.1. Let us assume that g satisfies (4.1). If

(4.2)
\kappa 

\rho 1
\not = b

\rho 2
,

then the energy functional \scrE g(\phi , \psi )(t) does not decay uniformly as t goes to infinity.
In other words, there does not exist a positive function d \in L1(0,\infty ) \cap L2

loc([0,\infty ))
such that

I. limt\rightarrow \infty d(t) = 0,
II. \scrE g(\phi , \psi )(t) \leq d2(t)\scrE g(\phi , \psi )(0), t > 0.

The proof of Theorem 4.1 shall be completed later, in subsection 4.2, as a conse-
quence of several proper (and technical) results for an approximate problem.

4.1. Approximate problem and technical results. First, we consider some
notation and preliminary results. We start by fixing \eta \in (0, \delta 2 ) and defining function

(4.3) gn(t) = \eta e - \eta tBn

\bigl( 
f , e - \eta t

\bigr) 
, n \geq 1,
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where f(x) = g\circ j - 1(x)
\eta x , with function j : [0,\infty ) \rightarrow (0, 1] being the bijection

j(t) = e - \eta t,

and Bn(\cdot , \cdot ) are the Bernstein polynomials given by

Bn(f, x) :=

n\sum 
\nu =0

\biggl( 
n
\nu 

\biggr) 
f(\nu /n)x\nu (1 - x)n - \nu for f and x.

Under the above notation, let us also define

gn =

n\sum 
\nu =1

f (\nu /n) \theta n,\nu ,

\theta n,\nu (t) = \eta 

\biggl( 
n
\nu 

\biggr) 
e - (\nu +1)\eta t(1 - e - \eta t)n - \nu .

Lemma 4.2. Under the above notation and g satisfying (4.1), we have that for
any \varepsilon > 0, there exists N \in \BbbN such that

\| g  - gn\| W 1,1(0,\infty ) < \varepsilon \forall n \geq N.

Moreover, for all n \in \BbbN , gn satisfies
(a) gn \geq 0, g\prime n \leq 0;
(b) limn\rightarrow \infty 

\int \infty 
0
gn(t)dt =

\int \infty 
0
g(t)dt.

Proof. The proof is analogous to the one in [3, Lemma 3.1]. See also [11, Theorem
2.1].

Now, let us consider the following approximate system:

\rho 1\phi tt  - \kappa pxx + \kappa (gn \ast pxx) = 0,(4.4)

\rho 2\psi tt  - b\psi xx + \kappa px  - \kappa (gn \ast px) = 0,(4.5)

where px = \phi x + \psi , with initial data

(\phi 0, \phi 1, \psi 0, \psi 1) \in H1
0 \times L2 \times H1

\ast \times L2
\ast .

If (\phi , \psi ) is a solution of system (4.4)--(4.5), then the associated energy is

\scrE gn(\phi , \psi )(t) =
1

2

\Bigl\{ 
\rho 1\| \phi t(t)\| 22+\rho 2\| \psi t(t)\| 22+b\| \psi x(t)\| 22+\kappa hn(t)\| px(t)\| 22+\kappa (gn\square px)(t)

\Bigr\} 
,

where hn(t) = 1 - 
\int t

0
gn(s)ds, and satisfies

d

dt
\scrE gn(\phi , \psi )(t) =

\kappa 

2
(g\prime n\square px)(t) - 

\kappa 

2
gn(t)\| px(t)\| 22 \leq 0 \forall t > 0.

Lemma 4.3. Assume that g satisfies (4.1). Also, assume that there exists a func-
tion d \in L1(\BbbR +) such that

\scrE g(\phi , \psi )(t) \leq d2(t)\scrE g(\phi , \psi )(0) \forall t > 0.

Thus, there are constants \~C0, \~C1 > 0 such that
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(i) \scrE gn(\phi  - \phi , \psi  - \psi )(t) \leq \varepsilon \~C0\scrE gn(\phi , \psi )(0),
(ii) | \scrE g(\phi , \psi )(t) - \scrE gn(\phi , \psi )(t)| \leq \varepsilon 1/2 \~C1\scrE g(\phi , \psi )(0),

for some \varepsilon > 0 sufficiently small.

Proof. Let \varepsilon > 0 be a positive to be chosen later and (\phi , \psi ) and (\phi , \psi ) be the
solutions of problems (3.1)--(3.2) and (4.4)--(4.5), respectively. If z = \phi  - \phi and
w = \psi  - \psi , then (z, w) is the solution of problem

\rho 1ztt  - \kappa \~pxx + \kappa gn \ast \~pxx = \kappa (gn  - g) \ast pxx,(4.6)

\rho 2wtt  - bwxx + \kappa \~px  - \kappa gn \ast \~px = \kappa (g  - gn) \ast px,(4.7)

where \~px = zx + w, with Dirichlet--Neumann boundary conditions like (3.3) and null
initial data. The associated energy functional is now given by

\scrE gn(z, w)(t) =
1

2

\biggl\{ 
\rho 1\| zt\| 22 + \rho 2\| wt\| 22 + b\| wx\| 22

+ \kappa 

\biggl( 
1 - 

\int t

0

gs(t)ds

\biggr) 
\| \~px\| 22 + \kappa gn\square \~px(t)

\biggr\} 
and satisfies

d

dt
\scrE gn(z, w)(t) \leq \kappa 

\int t

0

d

ds
((g  - gn) \ast px , \~px)2ds\underbrace{}  \underbrace{}  

:=I1

 - \kappa 

\int t

0

\biggl( 
d

ds
[(g  - gn) \ast px] , \~px

\biggr) 
2

ds\underbrace{}  \underbrace{}  
:=I2

.(4.8)

Using Lemma 4.2 and hypothesis on d, estimates for I1 and I2 are given below:

I1 \leq 1

\kappa l
\varepsilon [\scrE g(\phi , \psi )(0) + \scrE gn(z, w)(t)] ,(4.9)

I2 \leq 1

\kappa l

\biggl\{ 
2\varepsilon \| d\| 1\scrE g(\phi , \psi )(0) + (\varepsilon + 1)

\int t

0

[d(s) + \xi (s)] \scrE gn(z, w)(s)ds
\biggr\} 
,(4.10)

where \xi (s) = | (g  - gn)
\prime | \ast d(s). Replacing (4.9) and (4.10) in (4.8), we have\Bigl[ 

1 - \varepsilon 

l

\Bigr] 
\scrE gn(z, w)(t) \leq 

\varepsilon 

l
(2\| d\| 1+1)\scrE g(\phi , \psi )(0)+(\varepsilon +1)

\int t

0

[d(s) + \xi (s)] \scrE gn(z, w)(s)ds.

Choosing \varepsilon < l
2 and using Gronwall's inequality we have

\scrE gn(z, w)(t) \leq \varepsilon 
(4\| d\| 1 + 2)

l
exp

\biggl( 
2(\varepsilon + 1)

\int t

0

[d(s) + \xi (s)]ds

\biggr) 
\scrE g(\phi , \psi )(0).

Using again Lemma 4.2, we have
\int t

0
d(s) + \xi (s)ds \leq C(\varepsilon + 1) for some C > 0. Thus,

keeping in mind that \varepsilon < l
2 , we arrive at

(4.11) \scrE gn(z, w)(t) \leq \varepsilon 
(4\| d\| 1 + 2)

l
e2C(l/2+1)2\scrE g(\phi , \psi )(0).

Item (i). Inequality in (i) follows directly from (4.11) by putting the constant
\~C0 = (4\| d\| 1+2)

l e2C(l/2+1)2 and from the fact that \scrE g(\phi , \psi )(0) = \scrE gn(\phi , \psi )(0).
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Item (ii). In order to prove (ii), we first observe that straightforward computations
lead us to the next inequality for any \varepsilon > 0 and n sufficiently large:

(4.12) | \scrE g(\phi , \psi )(t) - \scrE gn(\phi , \psi )(t)| \leq 
4 + l

l2
\varepsilon \scrE g(\phi , \psi )(0).

On the other hand, we also have

(4.13) | \scrE gn(\phi , \psi )(t) - \scrE gn(\phi , \psi )(t)| \leq 10\scrE 1/2
g (\phi , \psi )(0)\scrE 1/2

gn (z, w)(t).

Combining (4.12) and (4.13) and using item (i), we obtain

| \scrE g(\phi , \psi )(t) - \scrE gn(\phi , \psi )(t)| \leq 
\biggl[ 
4 + l

l3/2
+ 10

\sqrt{} 
\~C0

\biggr] 
\varepsilon 1/2 \scrE g(\phi , \psi )(0).

Therefore, inequality in (ii) follows by taking \~C1 = 4+l
l3/2

+ 10
\sqrt{} 

\~C0.

Taking advantage of the notation introduced above, we have

gn \ast pxx =

n\sum 
\nu =1

f (\nu /n) yn,\nu x,

yn,\nu (t) := \theta n,\nu \ast pxx(t) =
\int t

0

\theta n,\nu (t - s)pxx(s)ds.

Now, let us also define the real vector-valued function Yn : \BbbR + \rightarrow \BbbR n by

Yn =

\left(   yn,1
...

yn,n

\right)   .

Thus, Yn is the solution of the system\left\{   Y \prime 
n(t) = AnYn +Dnpx, t > 0,

Yn(0) = 0,

where Dn = (0, . . . , 0, \eta )\prime and

(4.14) An = (ai,j) \in \BbbM n(\BbbR ), ai,j =

\left\{     
 - \eta (i+ 1), j = i;

\eta (i+ 1), j = i+ 1;

0 otherwise.

Under this notation, we have the following result.

Lemma 4.4. The operator An defined (4.14) is the infinitesimal generator of a
C0-semigroup \{ etAn\} on

\bigl[ 
L2(0, L)

\bigr] n
= L2(0, L) \times \cdot \cdot \cdot \times L2(0, L). Moreover, \{ etAn\} 

satisfies the following uniform estimate:

\| etAn\| [L2(0,L)]n \leq e - 
\eta 
2 t \forall t > 0.

Proof. At this point, the proof can be found in [3, Lemma 3.3].



VISCOELASTIC TIMOSHENKO SYSTEM 4539

With the above notation, system (4.4)--(4.5) can be rewritten as

\rho 1\phi tt  - \kappa pxx + \kappa BnYnx = 0,(4.15)

\rho 2\psi tt  - b\psi xx + \kappa px  - \kappa BnYn = 0,(4.16)

Y \prime 
n  - AnYn = Dnpx,(4.17)

with boundary conditions

(4.18) \phi (0, t) = \phi (L, t) = \psi x(0, t) = \psi x(L, t) = 0

and initial conditions
(4.19)
\phi (x, 0) = \phi 0(x), \phi t(x, 0) = \phi 1(x), \psi (x, 0) = \psi 0(x), \psi t(x, 0) = \psi 1(x), Yn(0) = 0,

where Bn := (f(1/n), . . . , f(n/n)).
In addition, the energy functional associated with problem (4.15)--(4.19) is

\scrE n(\phi , \psi , Yn)(t) =
1

2

\Bigl\{ 
\rho 1\| \phi t\| 22 + \rho 2\| \psi t\| 22 + b\| \psi x\| 22 + \kappa \| px\| 22 + \| Yn\| 2[L2(0,L)]n

\Bigr\} 
for t \geq 0. Let us now introduce the energy space \scrH = L2\times L2\times L2

\ast \times L2
\ast \times 
\bigl[ 
L2(0, L)

\bigr] n
.

If

Z =

\left(      
z1
z2
z3
z4
z5

\right)      :=

\left(          

\surd 
\rho 1\phi t  - 

\surd 
\kappa px +

\surd 
\kappa BnYn

\surd 
\rho 2\psi t  - 

\surd 
b\psi x

\surd 
\rho 1\phi t +

\surd 
\kappa px  - 

\surd 
\kappa BnYn

\surd 
\rho 2\psi t +

\surd 
b\psi x

Yn

\right)          
,

then Z satisfies the equation

(4.20) Zt = \Lambda Zx +MZ

with boundary condition

(4.21) (zi + ( - 1)i+1zi+2)(0, t) = (zi + ( - 1)i+1zi+2)(L, t) = 0, i = 1, 2,

where

\Lambda = diag

\Biggl( 
 - 
\sqrt{} 

\kappa 

\rho 1
, - 

\sqrt{} 
b

\rho 2
,

\sqrt{} 
\kappa 

\rho 1
,

\sqrt{} 
b

\rho 2
, 0n

\Biggr) 
and M =

\biggl( 
Mn4 M4n

Nn4 An +DnBn

\biggr) 
with

Mn4 =

\left(          

 - \eta 
2f
\bigl( 
n
n

\bigr) 
 - 1

2

\sqrt{} 
\kappa 
\rho 2

\eta 
2f
\bigl( 
n
n

\bigr) 
 - 1

2

\sqrt{} 
\kappa 
\rho 2

1
2

\sqrt{} 
\kappa 
\rho 2

0  - 1
2

\sqrt{} 
\kappa 
\rho 2

0

\eta 
2f
\bigl( 
n
n

\bigr) 
1
2

\sqrt{} 
\kappa 
\rho 2

 - \eta 
2f
\bigl( 
n
n

\bigr) 
1
2

\sqrt{} 
\kappa 
\rho 2

1
2

\sqrt{} 
\kappa 
\rho 2

0  - 1
2

\sqrt{} 
\kappa 
\rho 2

0

\right)          
,
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M4n =

\left(      
\surd 
\kappa BnAn + \eta 

\surd 
\kappa BnDnBn

0

 - 
\surd 
\kappa BnAn  - \eta 

\surd 
\kappa BnDnBn

0

\right)      ,

Nn4 =
\Bigl( 

 - 1
2
\surd 
\kappa 
Dn 0 1

2
\surd 
\kappa 
Dn 0

\Bigr) 
.

Also, let us consider the matrices that allow us to express Z in another way,

Pn =

\left(        

1/2 0 1/2 0 0

-1/2 0 1/2 0
\surd 
\kappa Bn

0 1/2 0 1/2 0

0 -1/2 0 1/2 0

0 0 0 0 In

\right)        ,

P - 1
n =

\left(        
1 -1 0 0

\surd 
\kappa Bn

0 0 1 -1 0

1 1 0 0  - 
\surd 
\kappa Bn

0 0 1 1 0

0 0 0 0 In

\right)        ,

and let e(\Lambda \partial x+M0)t be the semigroup associated with problem

Zt = \Lambda Zx +M0Z,

(zi + ( - 1)i+1zi+2)(0, t) = (zi + ( - 1)i+1zi+2)(L, t) = 0, i = 1, 2,

M0 := diag
\Bigl( 
 - \eta 
2
f(n/n) , 0 ,  - \eta 

2
f(n/n) , 0 , An +DnBn

\Bigr) 
.

Therefore, following the ideas of [3, section 3], which in turn relies on the results proved
in [1, 2], one can prove that if condition (4.2) holds, then the e(\Lambda \partial x+M)t  - e(\Lambda \partial x+M0)t

is a compact operator. Furthermore, the eigenvalues of \Lambda \partial x +M0 are given by

\sigma (\Lambda \partial x +M0)

(4.22)

= \sigma (An +DnBn) \cup 

\Biggl\{ \sqrt{} 
b

\rho 2

m\pi 

L
i, m \in \BbbZ 

\Biggr\} 
\cup 

\Biggl\{ 
 - \eta 
2
f(n/n) +

\sqrt{} 
b

\rho 2

m\pi 

L
i, m \in \BbbZ 

\Biggr\} 
.

The next result compares the energy solution of system (4.20)--(4.21) with the
energy \scrE gn(\phi , \psi ) related to problem (4.4)--(4.5).

Lemma 4.5. Under the above notation and assumptions of Theorem 4.1, if we
consider any n \in \BbbN and (\phi 0, \phi 1, \psi 0, \psi 1) \in H1

0 \times L2 \times H1
\ast \times L2

\ast , then there exists a
constant C > 0 such that

(4.23) \| Z(t)\| 2 = \| e(\Lambda \partial x+M)tZ0\| 2 \leq C

\biggl( 
\scrE gn(\phi , \psi )(t) +

\int t

0

e - 
\eta (t - s)

2 \scrE gn(\phi , \psi )(s)ds
\biggr) 
,

where

Z0 = P - 1
n

\Bigl( \surd 
\rho 1\phi 1 ,

\surd 
\kappa (\phi 0x + \psi 0) ,

\surd 
\rho 2\psi 1 ,

\surd 
b\psi 0x , 0n

\Bigr) T
.
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Proof. Let (\phi 0, \phi 1, \psi 0, \psi 1) and Z0 as in the statement of Lemma 4.5. If Z(t) is
the respective solution of (4.20)--(4.21), then it is not difficult to see that

Z(t) = P - 1
n

\Bigl( \surd 
\rho 1\phi t ,

\surd 
\kappa (\phi x + \psi ) ,

\surd 
\rho 2\psi t ,

\surd 
b\psi x , Yn

\Bigr) T
.

Performing straightforward calculations we have

(4.24) \| Z(t)\| 2 \leq 16

l
\scrE gn(\phi , \psi )(t) + 8\kappa \| BnYn\| 2 + \| Yn\| 2.

Using Lemma 4.2(b), an estimate for BnYn is gotten as

(4.25) \| BnYn\| 2 \leq 2(1 - l)

\kappa l
\scrE gn(\phi , \psi )(t).

Besides, using Lemma 4.4, an estimate for Yn goes as follows:

(4.26) \| Yn\| 2 \leq  - 4[e
\eta t
2  - 1]

l

\int t

0

e - 
\eta (t - s)

2 \scrE gn(\phi , \psi )(s)ds.

Combining (4.24), (4.25), and (4.26) we obtain

\| Z(t)\| 2 \leq max

\biggl\{ 
8(3 - l)

l
,
4

l

\biggr\} \biggl[ 
\scrE gn(\phi , \psi )(t) +

\int t

0

e - 
\eta (t - s)

2 \scrE gn(\phi , \psi )(s)ds
\biggr] 
.

Hence, inequality (4.23) follows by taking C = max\{ 8(3 - l)
l , 4\eta l \} .

In light of the above results, we are now in position to complete the proof of
Theorem 4.1 as follows.

4.2. Proof of Theorem 4.1: Completion. Let us suppose that there exists a
function d \in L1(0,\infty )\cap L2

loc(0,\infty ) such that items I and II of Theorem 4.1 hold true,
namely, limt\rightarrow \infty d(t) = 0 and

(4.27) \scrE g(\phi , \psi )(t) \leq d2(t)\scrE g(\phi , \psi )(0), t > 0.

Thus, from Lemma 4.3(ii) and inequality (4.27) it follows that

(4.28) \scrE gn(\phi , \psi )(t) \leq 
\Bigl( 
\varepsilon 1/2 \~C1 + d(t)2

\Bigr) 
\scrE g(\phi , \psi )(0).

In addition, for Yn(t) =
\int t

0
e - (t - s)AnDnpx(s)ds, it follows from Lemma 4.5 that

\| Z(t)\| 2 = \| e(\Lambda \partial x+M)tZ0\| 2

\leq C\varepsilon 1/2 \~C1

\biggl( 
1 +

2

\kappa 

\biggr) 
\scrE g(\phi , \psi )(0)(4.29)

+C

\biggl[ 
d(t)2 +

\int t

0

d(s)2e - 
\eta (t - s)

2 ds

\biggr] 
\scrE g(\phi , \psi )(0).

where Z(t) is the solution of (4.20)--(4.21). In particular, let initial data Zm
0 be

given as the eigenfunctions of the operator \Lambda \partial x+M0, associated with the eigenvalues

\lambda m =
\sqrt{} 

\rho 2

b
m\pi 
L i, m \in \BbbZ . In this case, Zm

0 =
\bigl( 
0 , z2(0)e

 - m\pi 
L i , 0 , z4(0)e

m\pi 
L i , 0n

\bigr) T
,

m \in \BbbZ , and
\| Zm

0 \| 2 = | z2(0)| 22L for m \in \BbbZ .
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Thus, for | z2(0)| = 1\surd 
2L

we have \| Zm
0 \| = 1 for every m \in \BbbZ . Since \{ Zm

0 \} m\in \BbbZ are the

eigenfunctions of \Lambda \partial x +M0, we have

(4.30) \| e(\Lambda \partial x+M0)tZm
0 \| =

\bigm| \bigm| \bigm| e\surd \rho 2
b

m\pi 
L i
\bigm| \bigm| \bigm| \| Zm

0 \| = 1 for m \in \BbbZ .

On the other hand, using (4.29) we have

\| e(\Lambda \partial x+M0)tZm
0 \| 2 \leq 2\| 

\Bigl( 
e(\Lambda \partial x+M0)t  - e(\Lambda \partial x+M)t

\Bigr) 
Zm
0 \| 2 + 2\| e(\Lambda \partial x+M)tZm

0 \| 2

\leq 2\| 
\Bigl( 
e(\Lambda \partial x+M0)t - e(\Lambda \partial x+M)t

\Bigr) 
Zm
0 \| 2+2C\varepsilon 1/2 \~C1

\biggl( 
1+

2

\kappa 

\biggr) 
\scrE g(\phi , \psi )(0)

+ 2C

\biggl[ 
d(t)2 +

\int t

0

d(s)2e - 
\eta (t - s)

2 ds

\biggr] 
\scrE g(\phi , \psi )(0).(4.31)

Since limt\rightarrow \infty d(t) = 0 we have

lim
t\rightarrow \infty 

\biggl[ 
d(t)2 +

\int t

0

d(s)2e - 
\eta (t - s)

2 ds

\biggr] 
= 0.(4.32)

Also, since e(\Lambda \partial x+M0)t - e(\Lambda \partial x+M)t

is a compact operator, reducing to a subsequence if
necessary, we have

(4.33)
\bigm\| \bigm\| \bigm\| \Bigl( e(\Lambda \partial x+M0)  - e(\Lambda \partial x+M)t

\Bigr) 
Zm
0

\bigm\| \bigm\| \bigm\| \rightarrow 0 as | m| \rightarrow \infty .

Therefore, using (4.31), (4.32), and (4.33) for t > 0 and | m| sufficiently large, and
also taking \varepsilon > 0 sufficiently small, we conclude

\| e(\Lambda \partial x+M0)tZm
0 \| 2 < 1,

which is in contradiction with (4.30). This concludes the proof of Theorem 4.1.
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